This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ustuqtop , similar to elnei . (Contributed by Thierry Arnoux, 11-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | utopustuq.1 | |- N = ( p e. X |-> ran ( v e. U |-> ( v " { p } ) ) ) |
|
| Assertion | ustuqtop3 | |- ( ( ( U e. ( UnifOn ` X ) /\ p e. X ) /\ a e. ( N ` p ) ) -> p e. a ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | utopustuq.1 | |- N = ( p e. X |-> ran ( v e. U |-> ( v " { p } ) ) ) |
|
| 2 | fnresi | |- ( _I |` X ) Fn X |
|
| 3 | fnsnfv | |- ( ( ( _I |` X ) Fn X /\ p e. X ) -> { ( ( _I |` X ) ` p ) } = ( ( _I |` X ) " { p } ) ) |
|
| 4 | 2 3 | mpan | |- ( p e. X -> { ( ( _I |` X ) ` p ) } = ( ( _I |` X ) " { p } ) ) |
| 5 | 4 | ad4antlr | |- ( ( ( ( ( U e. ( UnifOn ` X ) /\ p e. X ) /\ a e. ( N ` p ) ) /\ w e. U ) /\ a = ( w " { p } ) ) -> { ( ( _I |` X ) ` p ) } = ( ( _I |` X ) " { p } ) ) |
| 6 | ustdiag | |- ( ( U e. ( UnifOn ` X ) /\ w e. U ) -> ( _I |` X ) C_ w ) |
|
| 7 | 6 | ad5ant14 | |- ( ( ( ( ( U e. ( UnifOn ` X ) /\ p e. X ) /\ a e. ( N ` p ) ) /\ w e. U ) /\ a = ( w " { p } ) ) -> ( _I |` X ) C_ w ) |
| 8 | imass1 | |- ( ( _I |` X ) C_ w -> ( ( _I |` X ) " { p } ) C_ ( w " { p } ) ) |
|
| 9 | 7 8 | syl | |- ( ( ( ( ( U e. ( UnifOn ` X ) /\ p e. X ) /\ a e. ( N ` p ) ) /\ w e. U ) /\ a = ( w " { p } ) ) -> ( ( _I |` X ) " { p } ) C_ ( w " { p } ) ) |
| 10 | 5 9 | eqsstrd | |- ( ( ( ( ( U e. ( UnifOn ` X ) /\ p e. X ) /\ a e. ( N ` p ) ) /\ w e. U ) /\ a = ( w " { p } ) ) -> { ( ( _I |` X ) ` p ) } C_ ( w " { p } ) ) |
| 11 | fvex | |- ( ( _I |` X ) ` p ) e. _V |
|
| 12 | 11 | snss | |- ( ( ( _I |` X ) ` p ) e. ( w " { p } ) <-> { ( ( _I |` X ) ` p ) } C_ ( w " { p } ) ) |
| 13 | 10 12 | sylibr | |- ( ( ( ( ( U e. ( UnifOn ` X ) /\ p e. X ) /\ a e. ( N ` p ) ) /\ w e. U ) /\ a = ( w " { p } ) ) -> ( ( _I |` X ) ` p ) e. ( w " { p } ) ) |
| 14 | fvresi | |- ( p e. X -> ( ( _I |` X ) ` p ) = p ) |
|
| 15 | 14 | eqcomd | |- ( p e. X -> p = ( ( _I |` X ) ` p ) ) |
| 16 | 15 | ad4antlr | |- ( ( ( ( ( U e. ( UnifOn ` X ) /\ p e. X ) /\ a e. ( N ` p ) ) /\ w e. U ) /\ a = ( w " { p } ) ) -> p = ( ( _I |` X ) ` p ) ) |
| 17 | simpr | |- ( ( ( ( ( U e. ( UnifOn ` X ) /\ p e. X ) /\ a e. ( N ` p ) ) /\ w e. U ) /\ a = ( w " { p } ) ) -> a = ( w " { p } ) ) |
|
| 18 | 13 16 17 | 3eltr4d | |- ( ( ( ( ( U e. ( UnifOn ` X ) /\ p e. X ) /\ a e. ( N ` p ) ) /\ w e. U ) /\ a = ( w " { p } ) ) -> p e. a ) |
| 19 | 1 | ustuqtoplem | |- ( ( ( U e. ( UnifOn ` X ) /\ p e. X ) /\ a e. _V ) -> ( a e. ( N ` p ) <-> E. w e. U a = ( w " { p } ) ) ) |
| 20 | 19 | elvd | |- ( ( U e. ( UnifOn ` X ) /\ p e. X ) -> ( a e. ( N ` p ) <-> E. w e. U a = ( w " { p } ) ) ) |
| 21 | 20 | biimpa | |- ( ( ( U e. ( UnifOn ` X ) /\ p e. X ) /\ a e. ( N ` p ) ) -> E. w e. U a = ( w " { p } ) ) |
| 22 | 18 21 | r19.29a | |- ( ( ( U e. ( UnifOn ` X ) /\ p e. X ) /\ a e. ( N ` p ) ) -> p e. a ) |