This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The union of two subclasses is a subclass. Theorem 27 of Suppes p. 27 and its converse. (Contributed by NM, 11-Jun-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | unss | |- ( ( A C_ C /\ B C_ C ) <-> ( A u. B ) C_ C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ss | |- ( ( A u. B ) C_ C <-> A. x ( x e. ( A u. B ) -> x e. C ) ) |
|
| 2 | 19.26 | |- ( A. x ( ( x e. A -> x e. C ) /\ ( x e. B -> x e. C ) ) <-> ( A. x ( x e. A -> x e. C ) /\ A. x ( x e. B -> x e. C ) ) ) |
|
| 3 | elunant | |- ( ( x e. ( A u. B ) -> x e. C ) <-> ( ( x e. A -> x e. C ) /\ ( x e. B -> x e. C ) ) ) |
|
| 4 | 3 | albii | |- ( A. x ( x e. ( A u. B ) -> x e. C ) <-> A. x ( ( x e. A -> x e. C ) /\ ( x e. B -> x e. C ) ) ) |
| 5 | df-ss | |- ( A C_ C <-> A. x ( x e. A -> x e. C ) ) |
|
| 6 | df-ss | |- ( B C_ C <-> A. x ( x e. B -> x e. C ) ) |
|
| 7 | 5 6 | anbi12i | |- ( ( A C_ C /\ B C_ C ) <-> ( A. x ( x e. A -> x e. C ) /\ A. x ( x e. B -> x e. C ) ) ) |
| 8 | 2 4 7 | 3bitr4i | |- ( A. x ( x e. ( A u. B ) -> x e. C ) <-> ( A C_ C /\ B C_ C ) ) |
| 9 | 1 8 | bitr2i | |- ( ( A C_ C /\ B C_ C ) <-> ( A u. B ) C_ C ) |