This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A relationship involving double difference and union. (Contributed by NM, 29-Aug-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | difun1 | |- ( A \ ( B u. C ) ) = ( ( A \ B ) \ C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inass | |- ( ( A i^i ( _V \ B ) ) i^i ( _V \ C ) ) = ( A i^i ( ( _V \ B ) i^i ( _V \ C ) ) ) |
|
| 2 | invdif | |- ( ( A i^i ( _V \ B ) ) i^i ( _V \ C ) ) = ( ( A i^i ( _V \ B ) ) \ C ) |
|
| 3 | 1 2 | eqtr3i | |- ( A i^i ( ( _V \ B ) i^i ( _V \ C ) ) ) = ( ( A i^i ( _V \ B ) ) \ C ) |
| 4 | undm | |- ( _V \ ( B u. C ) ) = ( ( _V \ B ) i^i ( _V \ C ) ) |
|
| 5 | 4 | ineq2i | |- ( A i^i ( _V \ ( B u. C ) ) ) = ( A i^i ( ( _V \ B ) i^i ( _V \ C ) ) ) |
| 6 | invdif | |- ( A i^i ( _V \ ( B u. C ) ) ) = ( A \ ( B u. C ) ) |
|
| 7 | 5 6 | eqtr3i | |- ( A i^i ( ( _V \ B ) i^i ( _V \ C ) ) ) = ( A \ ( B u. C ) ) |
| 8 | 3 7 | eqtr3i | |- ( ( A i^i ( _V \ B ) ) \ C ) = ( A \ ( B u. C ) ) |
| 9 | invdif | |- ( A i^i ( _V \ B ) ) = ( A \ B ) |
|
| 10 | 9 | difeq1i | |- ( ( A i^i ( _V \ B ) ) \ C ) = ( ( A \ B ) \ C ) |
| 11 | 8 10 | eqtr3i | |- ( A \ ( B u. C ) ) = ( ( A \ B ) \ C ) |