This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: From ovolun , it suffices to show that the measure of x is at least the sum of the measures of x i^i A and x \ A . (Contributed by Mario Carneiro, 15-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ismbl2 | |- ( A e. dom vol <-> ( A C_ RR /\ A. x e. ~P RR ( ( vol* ` x ) e. RR -> ( ( vol* ` ( x i^i A ) ) + ( vol* ` ( x \ A ) ) ) <_ ( vol* ` x ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ismbl | |- ( A e. dom vol <-> ( A C_ RR /\ A. x e. ~P RR ( ( vol* ` x ) e. RR -> ( vol* ` x ) = ( ( vol* ` ( x i^i A ) ) + ( vol* ` ( x \ A ) ) ) ) ) ) |
|
| 2 | elpwi | |- ( x e. ~P RR -> x C_ RR ) |
|
| 3 | inundif | |- ( ( x i^i A ) u. ( x \ A ) ) = x |
|
| 4 | 3 | fveq2i | |- ( vol* ` ( ( x i^i A ) u. ( x \ A ) ) ) = ( vol* ` x ) |
| 5 | inss1 | |- ( x i^i A ) C_ x |
|
| 6 | simprl | |- ( ( A C_ RR /\ ( x C_ RR /\ ( vol* ` x ) e. RR ) ) -> x C_ RR ) |
|
| 7 | 5 6 | sstrid | |- ( ( A C_ RR /\ ( x C_ RR /\ ( vol* ` x ) e. RR ) ) -> ( x i^i A ) C_ RR ) |
| 8 | ovolsscl | |- ( ( ( x i^i A ) C_ x /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> ( vol* ` ( x i^i A ) ) e. RR ) |
|
| 9 | 5 8 | mp3an1 | |- ( ( x C_ RR /\ ( vol* ` x ) e. RR ) -> ( vol* ` ( x i^i A ) ) e. RR ) |
| 10 | 9 | adantl | |- ( ( A C_ RR /\ ( x C_ RR /\ ( vol* ` x ) e. RR ) ) -> ( vol* ` ( x i^i A ) ) e. RR ) |
| 11 | difss | |- ( x \ A ) C_ x |
|
| 12 | 11 6 | sstrid | |- ( ( A C_ RR /\ ( x C_ RR /\ ( vol* ` x ) e. RR ) ) -> ( x \ A ) C_ RR ) |
| 13 | ovolsscl | |- ( ( ( x \ A ) C_ x /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> ( vol* ` ( x \ A ) ) e. RR ) |
|
| 14 | 11 13 | mp3an1 | |- ( ( x C_ RR /\ ( vol* ` x ) e. RR ) -> ( vol* ` ( x \ A ) ) e. RR ) |
| 15 | 14 | adantl | |- ( ( A C_ RR /\ ( x C_ RR /\ ( vol* ` x ) e. RR ) ) -> ( vol* ` ( x \ A ) ) e. RR ) |
| 16 | ovolun | |- ( ( ( ( x i^i A ) C_ RR /\ ( vol* ` ( x i^i A ) ) e. RR ) /\ ( ( x \ A ) C_ RR /\ ( vol* ` ( x \ A ) ) e. RR ) ) -> ( vol* ` ( ( x i^i A ) u. ( x \ A ) ) ) <_ ( ( vol* ` ( x i^i A ) ) + ( vol* ` ( x \ A ) ) ) ) |
|
| 17 | 7 10 12 15 16 | syl22anc | |- ( ( A C_ RR /\ ( x C_ RR /\ ( vol* ` x ) e. RR ) ) -> ( vol* ` ( ( x i^i A ) u. ( x \ A ) ) ) <_ ( ( vol* ` ( x i^i A ) ) + ( vol* ` ( x \ A ) ) ) ) |
| 18 | 4 17 | eqbrtrrid | |- ( ( A C_ RR /\ ( x C_ RR /\ ( vol* ` x ) e. RR ) ) -> ( vol* ` x ) <_ ( ( vol* ` ( x i^i A ) ) + ( vol* ` ( x \ A ) ) ) ) |
| 19 | simprr | |- ( ( A C_ RR /\ ( x C_ RR /\ ( vol* ` x ) e. RR ) ) -> ( vol* ` x ) e. RR ) |
|
| 20 | 10 15 | readdcld | |- ( ( A C_ RR /\ ( x C_ RR /\ ( vol* ` x ) e. RR ) ) -> ( ( vol* ` ( x i^i A ) ) + ( vol* ` ( x \ A ) ) ) e. RR ) |
| 21 | 19 20 | letri3d | |- ( ( A C_ RR /\ ( x C_ RR /\ ( vol* ` x ) e. RR ) ) -> ( ( vol* ` x ) = ( ( vol* ` ( x i^i A ) ) + ( vol* ` ( x \ A ) ) ) <-> ( ( vol* ` x ) <_ ( ( vol* ` ( x i^i A ) ) + ( vol* ` ( x \ A ) ) ) /\ ( ( vol* ` ( x i^i A ) ) + ( vol* ` ( x \ A ) ) ) <_ ( vol* ` x ) ) ) ) |
| 22 | 18 21 | mpbirand | |- ( ( A C_ RR /\ ( x C_ RR /\ ( vol* ` x ) e. RR ) ) -> ( ( vol* ` x ) = ( ( vol* ` ( x i^i A ) ) + ( vol* ` ( x \ A ) ) ) <-> ( ( vol* ` ( x i^i A ) ) + ( vol* ` ( x \ A ) ) ) <_ ( vol* ` x ) ) ) |
| 23 | 22 | expr | |- ( ( A C_ RR /\ x C_ RR ) -> ( ( vol* ` x ) e. RR -> ( ( vol* ` x ) = ( ( vol* ` ( x i^i A ) ) + ( vol* ` ( x \ A ) ) ) <-> ( ( vol* ` ( x i^i A ) ) + ( vol* ` ( x \ A ) ) ) <_ ( vol* ` x ) ) ) ) |
| 24 | 23 | pm5.74d | |- ( ( A C_ RR /\ x C_ RR ) -> ( ( ( vol* ` x ) e. RR -> ( vol* ` x ) = ( ( vol* ` ( x i^i A ) ) + ( vol* ` ( x \ A ) ) ) ) <-> ( ( vol* ` x ) e. RR -> ( ( vol* ` ( x i^i A ) ) + ( vol* ` ( x \ A ) ) ) <_ ( vol* ` x ) ) ) ) |
| 25 | 2 24 | sylan2 | |- ( ( A C_ RR /\ x e. ~P RR ) -> ( ( ( vol* ` x ) e. RR -> ( vol* ` x ) = ( ( vol* ` ( x i^i A ) ) + ( vol* ` ( x \ A ) ) ) ) <-> ( ( vol* ` x ) e. RR -> ( ( vol* ` ( x i^i A ) ) + ( vol* ` ( x \ A ) ) ) <_ ( vol* ` x ) ) ) ) |
| 26 | 25 | ralbidva | |- ( A C_ RR -> ( A. x e. ~P RR ( ( vol* ` x ) e. RR -> ( vol* ` x ) = ( ( vol* ` ( x i^i A ) ) + ( vol* ` ( x \ A ) ) ) ) <-> A. x e. ~P RR ( ( vol* ` x ) e. RR -> ( ( vol* ` ( x i^i A ) ) + ( vol* ` ( x \ A ) ) ) <_ ( vol* ` x ) ) ) ) |
| 27 | 26 | pm5.32i | |- ( ( A C_ RR /\ A. x e. ~P RR ( ( vol* ` x ) e. RR -> ( vol* ` x ) = ( ( vol* ` ( x i^i A ) ) + ( vol* ` ( x \ A ) ) ) ) ) <-> ( A C_ RR /\ A. x e. ~P RR ( ( vol* ` x ) e. RR -> ( ( vol* ` ( x i^i A ) ) + ( vol* ` ( x \ A ) ) ) <_ ( vol* ` x ) ) ) ) |
| 28 | 1 27 | bitri | |- ( A e. dom vol <-> ( A C_ RR /\ A. x e. ~P RR ( ( vol* ` x ) e. RR -> ( ( vol* ` ( x i^i A ) ) + ( vol* ` ( x \ A ) ) ) <_ ( vol* ` x ) ) ) ) |