This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Inverse of an infinite group sum. (Contributed by Mario Carneiro, 20-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tsmsinv.b | |- B = ( Base ` G ) |
|
| tsmsinv.p | |- I = ( invg ` G ) |
||
| tsmsinv.1 | |- ( ph -> G e. CMnd ) |
||
| tsmsinv.2 | |- ( ph -> G e. TopGrp ) |
||
| tsmsinv.a | |- ( ph -> A e. V ) |
||
| tsmsinv.f | |- ( ph -> F : A --> B ) |
||
| tsmsinv.x | |- ( ph -> X e. ( G tsums F ) ) |
||
| Assertion | tsmsinv | |- ( ph -> ( I ` X ) e. ( G tsums ( I o. F ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tsmsinv.b | |- B = ( Base ` G ) |
|
| 2 | tsmsinv.p | |- I = ( invg ` G ) |
|
| 3 | tsmsinv.1 | |- ( ph -> G e. CMnd ) |
|
| 4 | tsmsinv.2 | |- ( ph -> G e. TopGrp ) |
|
| 5 | tsmsinv.a | |- ( ph -> A e. V ) |
|
| 6 | tsmsinv.f | |- ( ph -> F : A --> B ) |
|
| 7 | tsmsinv.x | |- ( ph -> X e. ( G tsums F ) ) |
|
| 8 | eqid | |- ( TopOpen ` G ) = ( TopOpen ` G ) |
|
| 9 | tgptps | |- ( G e. TopGrp -> G e. TopSp ) |
|
| 10 | 4 9 | syl | |- ( ph -> G e. TopSp ) |
| 11 | tgpgrp | |- ( G e. TopGrp -> G e. Grp ) |
|
| 12 | 4 11 | syl | |- ( ph -> G e. Grp ) |
| 13 | isabl | |- ( G e. Abel <-> ( G e. Grp /\ G e. CMnd ) ) |
|
| 14 | 12 3 13 | sylanbrc | |- ( ph -> G e. Abel ) |
| 15 | 1 2 | invghm | |- ( G e. Abel <-> I e. ( G GrpHom G ) ) |
| 16 | 14 15 | sylib | |- ( ph -> I e. ( G GrpHom G ) ) |
| 17 | ghmmhm | |- ( I e. ( G GrpHom G ) -> I e. ( G MndHom G ) ) |
|
| 18 | 16 17 | syl | |- ( ph -> I e. ( G MndHom G ) ) |
| 19 | 8 2 | tgpinv | |- ( G e. TopGrp -> I e. ( ( TopOpen ` G ) Cn ( TopOpen ` G ) ) ) |
| 20 | 4 19 | syl | |- ( ph -> I e. ( ( TopOpen ` G ) Cn ( TopOpen ` G ) ) ) |
| 21 | 1 8 8 3 10 3 10 18 20 5 6 7 | tsmsmhm | |- ( ph -> ( I ` X ) e. ( G tsums ( I o. F ) ) ) |