This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Taking images under a one-to-one function preserves subsets. (Contributed by Stefan O'Rear, 30-Oct-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | f1imass | |- ( ( F : A -1-1-> B /\ ( C C_ A /\ D C_ A ) ) -> ( ( F " C ) C_ ( F " D ) <-> C C_ D ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplrl | |- ( ( ( F : A -1-1-> B /\ ( C C_ A /\ D C_ A ) ) /\ ( F " C ) C_ ( F " D ) ) -> C C_ A ) |
|
| 2 | 1 | sseld | |- ( ( ( F : A -1-1-> B /\ ( C C_ A /\ D C_ A ) ) /\ ( F " C ) C_ ( F " D ) ) -> ( a e. C -> a e. A ) ) |
| 3 | simplr | |- ( ( ( ( F : A -1-1-> B /\ ( C C_ A /\ D C_ A ) ) /\ ( F " C ) C_ ( F " D ) ) /\ a e. A ) -> ( F " C ) C_ ( F " D ) ) |
|
| 4 | 3 | sseld | |- ( ( ( ( F : A -1-1-> B /\ ( C C_ A /\ D C_ A ) ) /\ ( F " C ) C_ ( F " D ) ) /\ a e. A ) -> ( ( F ` a ) e. ( F " C ) -> ( F ` a ) e. ( F " D ) ) ) |
| 5 | simplll | |- ( ( ( ( F : A -1-1-> B /\ ( C C_ A /\ D C_ A ) ) /\ ( F " C ) C_ ( F " D ) ) /\ a e. A ) -> F : A -1-1-> B ) |
|
| 6 | simpr | |- ( ( ( ( F : A -1-1-> B /\ ( C C_ A /\ D C_ A ) ) /\ ( F " C ) C_ ( F " D ) ) /\ a e. A ) -> a e. A ) |
|
| 7 | simp1rl | |- ( ( ( F : A -1-1-> B /\ ( C C_ A /\ D C_ A ) ) /\ ( F " C ) C_ ( F " D ) /\ a e. A ) -> C C_ A ) |
|
| 8 | 7 | 3expa | |- ( ( ( ( F : A -1-1-> B /\ ( C C_ A /\ D C_ A ) ) /\ ( F " C ) C_ ( F " D ) ) /\ a e. A ) -> C C_ A ) |
| 9 | f1elima | |- ( ( F : A -1-1-> B /\ a e. A /\ C C_ A ) -> ( ( F ` a ) e. ( F " C ) <-> a e. C ) ) |
|
| 10 | 5 6 8 9 | syl3anc | |- ( ( ( ( F : A -1-1-> B /\ ( C C_ A /\ D C_ A ) ) /\ ( F " C ) C_ ( F " D ) ) /\ a e. A ) -> ( ( F ` a ) e. ( F " C ) <-> a e. C ) ) |
| 11 | simp1rr | |- ( ( ( F : A -1-1-> B /\ ( C C_ A /\ D C_ A ) ) /\ ( F " C ) C_ ( F " D ) /\ a e. A ) -> D C_ A ) |
|
| 12 | 11 | 3expa | |- ( ( ( ( F : A -1-1-> B /\ ( C C_ A /\ D C_ A ) ) /\ ( F " C ) C_ ( F " D ) ) /\ a e. A ) -> D C_ A ) |
| 13 | f1elima | |- ( ( F : A -1-1-> B /\ a e. A /\ D C_ A ) -> ( ( F ` a ) e. ( F " D ) <-> a e. D ) ) |
|
| 14 | 5 6 12 13 | syl3anc | |- ( ( ( ( F : A -1-1-> B /\ ( C C_ A /\ D C_ A ) ) /\ ( F " C ) C_ ( F " D ) ) /\ a e. A ) -> ( ( F ` a ) e. ( F " D ) <-> a e. D ) ) |
| 15 | 4 10 14 | 3imtr3d | |- ( ( ( ( F : A -1-1-> B /\ ( C C_ A /\ D C_ A ) ) /\ ( F " C ) C_ ( F " D ) ) /\ a e. A ) -> ( a e. C -> a e. D ) ) |
| 16 | 15 | ex | |- ( ( ( F : A -1-1-> B /\ ( C C_ A /\ D C_ A ) ) /\ ( F " C ) C_ ( F " D ) ) -> ( a e. A -> ( a e. C -> a e. D ) ) ) |
| 17 | 2 16 | syld | |- ( ( ( F : A -1-1-> B /\ ( C C_ A /\ D C_ A ) ) /\ ( F " C ) C_ ( F " D ) ) -> ( a e. C -> ( a e. C -> a e. D ) ) ) |
| 18 | 17 | pm2.43d | |- ( ( ( F : A -1-1-> B /\ ( C C_ A /\ D C_ A ) ) /\ ( F " C ) C_ ( F " D ) ) -> ( a e. C -> a e. D ) ) |
| 19 | 18 | ssrdv | |- ( ( ( F : A -1-1-> B /\ ( C C_ A /\ D C_ A ) ) /\ ( F " C ) C_ ( F " D ) ) -> C C_ D ) |
| 20 | 19 | ex | |- ( ( F : A -1-1-> B /\ ( C C_ A /\ D C_ A ) ) -> ( ( F " C ) C_ ( F " D ) -> C C_ D ) ) |
| 21 | imass2 | |- ( C C_ D -> ( F " C ) C_ ( F " D ) ) |
|
| 22 | 20 21 | impbid1 | |- ( ( F : A -1-1-> B /\ ( C C_ A /\ D C_ A ) ) -> ( ( F " C ) C_ ( F " D ) <-> C C_ D ) ) |