This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The image of a convergent sequence under a continuous map is convergent to the image of the original point. Binary operation version. (Contributed by Mario Carneiro, 19-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | flfcnp2.j | |- ( ph -> J e. ( TopOn ` X ) ) |
|
| flfcnp2.k | |- ( ph -> K e. ( TopOn ` Y ) ) |
||
| flfcnp2.l | |- ( ph -> L e. ( Fil ` Z ) ) |
||
| flfcnp2.a | |- ( ( ph /\ x e. Z ) -> A e. X ) |
||
| flfcnp2.b | |- ( ( ph /\ x e. Z ) -> B e. Y ) |
||
| flfcnp2.r | |- ( ph -> R e. ( ( J fLimf L ) ` ( x e. Z |-> A ) ) ) |
||
| flfcnp2.s | |- ( ph -> S e. ( ( K fLimf L ) ` ( x e. Z |-> B ) ) ) |
||
| flfcnp2.o | |- ( ph -> O e. ( ( ( J tX K ) CnP N ) ` <. R , S >. ) ) |
||
| Assertion | flfcnp2 | |- ( ph -> ( R O S ) e. ( ( N fLimf L ) ` ( x e. Z |-> ( A O B ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | flfcnp2.j | |- ( ph -> J e. ( TopOn ` X ) ) |
|
| 2 | flfcnp2.k | |- ( ph -> K e. ( TopOn ` Y ) ) |
|
| 3 | flfcnp2.l | |- ( ph -> L e. ( Fil ` Z ) ) |
|
| 4 | flfcnp2.a | |- ( ( ph /\ x e. Z ) -> A e. X ) |
|
| 5 | flfcnp2.b | |- ( ( ph /\ x e. Z ) -> B e. Y ) |
|
| 6 | flfcnp2.r | |- ( ph -> R e. ( ( J fLimf L ) ` ( x e. Z |-> A ) ) ) |
|
| 7 | flfcnp2.s | |- ( ph -> S e. ( ( K fLimf L ) ` ( x e. Z |-> B ) ) ) |
|
| 8 | flfcnp2.o | |- ( ph -> O e. ( ( ( J tX K ) CnP N ) ` <. R , S >. ) ) |
|
| 9 | df-ov | |- ( R O S ) = ( O ` <. R , S >. ) |
|
| 10 | txtopon | |- ( ( J e. ( TopOn ` X ) /\ K e. ( TopOn ` Y ) ) -> ( J tX K ) e. ( TopOn ` ( X X. Y ) ) ) |
|
| 11 | 1 2 10 | syl2anc | |- ( ph -> ( J tX K ) e. ( TopOn ` ( X X. Y ) ) ) |
| 12 | 4 5 | opelxpd | |- ( ( ph /\ x e. Z ) -> <. A , B >. e. ( X X. Y ) ) |
| 13 | 12 | fmpttd | |- ( ph -> ( x e. Z |-> <. A , B >. ) : Z --> ( X X. Y ) ) |
| 14 | 4 | fmpttd | |- ( ph -> ( x e. Z |-> A ) : Z --> X ) |
| 15 | 5 | fmpttd | |- ( ph -> ( x e. Z |-> B ) : Z --> Y ) |
| 16 | nfcv | |- F/_ y <. ( ( x e. Z |-> A ) ` x ) , ( ( x e. Z |-> B ) ` x ) >. |
|
| 17 | nffvmpt1 | |- F/_ x ( ( x e. Z |-> A ) ` y ) |
|
| 18 | nffvmpt1 | |- F/_ x ( ( x e. Z |-> B ) ` y ) |
|
| 19 | 17 18 | nfop | |- F/_ x <. ( ( x e. Z |-> A ) ` y ) , ( ( x e. Z |-> B ) ` y ) >. |
| 20 | fveq2 | |- ( x = y -> ( ( x e. Z |-> A ) ` x ) = ( ( x e. Z |-> A ) ` y ) ) |
|
| 21 | fveq2 | |- ( x = y -> ( ( x e. Z |-> B ) ` x ) = ( ( x e. Z |-> B ) ` y ) ) |
|
| 22 | 20 21 | opeq12d | |- ( x = y -> <. ( ( x e. Z |-> A ) ` x ) , ( ( x e. Z |-> B ) ` x ) >. = <. ( ( x e. Z |-> A ) ` y ) , ( ( x e. Z |-> B ) ` y ) >. ) |
| 23 | 16 19 22 | cbvmpt | |- ( x e. Z |-> <. ( ( x e. Z |-> A ) ` x ) , ( ( x e. Z |-> B ) ` x ) >. ) = ( y e. Z |-> <. ( ( x e. Z |-> A ) ` y ) , ( ( x e. Z |-> B ) ` y ) >. ) |
| 24 | 1 2 3 14 15 23 | txflf | |- ( ph -> ( <. R , S >. e. ( ( ( J tX K ) fLimf L ) ` ( x e. Z |-> <. ( ( x e. Z |-> A ) ` x ) , ( ( x e. Z |-> B ) ` x ) >. ) ) <-> ( R e. ( ( J fLimf L ) ` ( x e. Z |-> A ) ) /\ S e. ( ( K fLimf L ) ` ( x e. Z |-> B ) ) ) ) ) |
| 25 | 6 7 24 | mpbir2and | |- ( ph -> <. R , S >. e. ( ( ( J tX K ) fLimf L ) ` ( x e. Z |-> <. ( ( x e. Z |-> A ) ` x ) , ( ( x e. Z |-> B ) ` x ) >. ) ) ) |
| 26 | simpr | |- ( ( ph /\ x e. Z ) -> x e. Z ) |
|
| 27 | eqid | |- ( x e. Z |-> A ) = ( x e. Z |-> A ) |
|
| 28 | 27 | fvmpt2 | |- ( ( x e. Z /\ A e. X ) -> ( ( x e. Z |-> A ) ` x ) = A ) |
| 29 | 26 4 28 | syl2anc | |- ( ( ph /\ x e. Z ) -> ( ( x e. Z |-> A ) ` x ) = A ) |
| 30 | eqid | |- ( x e. Z |-> B ) = ( x e. Z |-> B ) |
|
| 31 | 30 | fvmpt2 | |- ( ( x e. Z /\ B e. Y ) -> ( ( x e. Z |-> B ) ` x ) = B ) |
| 32 | 26 5 31 | syl2anc | |- ( ( ph /\ x e. Z ) -> ( ( x e. Z |-> B ) ` x ) = B ) |
| 33 | 29 32 | opeq12d | |- ( ( ph /\ x e. Z ) -> <. ( ( x e. Z |-> A ) ` x ) , ( ( x e. Z |-> B ) ` x ) >. = <. A , B >. ) |
| 34 | 33 | mpteq2dva | |- ( ph -> ( x e. Z |-> <. ( ( x e. Z |-> A ) ` x ) , ( ( x e. Z |-> B ) ` x ) >. ) = ( x e. Z |-> <. A , B >. ) ) |
| 35 | 34 | fveq2d | |- ( ph -> ( ( ( J tX K ) fLimf L ) ` ( x e. Z |-> <. ( ( x e. Z |-> A ) ` x ) , ( ( x e. Z |-> B ) ` x ) >. ) ) = ( ( ( J tX K ) fLimf L ) ` ( x e. Z |-> <. A , B >. ) ) ) |
| 36 | 25 35 | eleqtrd | |- ( ph -> <. R , S >. e. ( ( ( J tX K ) fLimf L ) ` ( x e. Z |-> <. A , B >. ) ) ) |
| 37 | flfcnp | |- ( ( ( ( J tX K ) e. ( TopOn ` ( X X. Y ) ) /\ L e. ( Fil ` Z ) /\ ( x e. Z |-> <. A , B >. ) : Z --> ( X X. Y ) ) /\ ( <. R , S >. e. ( ( ( J tX K ) fLimf L ) ` ( x e. Z |-> <. A , B >. ) ) /\ O e. ( ( ( J tX K ) CnP N ) ` <. R , S >. ) ) ) -> ( O ` <. R , S >. ) e. ( ( N fLimf L ) ` ( O o. ( x e. Z |-> <. A , B >. ) ) ) ) |
|
| 38 | 11 3 13 36 8 37 | syl32anc | |- ( ph -> ( O ` <. R , S >. ) e. ( ( N fLimf L ) ` ( O o. ( x e. Z |-> <. A , B >. ) ) ) ) |
| 39 | eqidd | |- ( ph -> ( x e. Z |-> <. A , B >. ) = ( x e. Z |-> <. A , B >. ) ) |
|
| 40 | cnptop2 | |- ( O e. ( ( ( J tX K ) CnP N ) ` <. R , S >. ) -> N e. Top ) |
|
| 41 | 8 40 | syl | |- ( ph -> N e. Top ) |
| 42 | toptopon2 | |- ( N e. Top <-> N e. ( TopOn ` U. N ) ) |
|
| 43 | 41 42 | sylib | |- ( ph -> N e. ( TopOn ` U. N ) ) |
| 44 | cnpf2 | |- ( ( ( J tX K ) e. ( TopOn ` ( X X. Y ) ) /\ N e. ( TopOn ` U. N ) /\ O e. ( ( ( J tX K ) CnP N ) ` <. R , S >. ) ) -> O : ( X X. Y ) --> U. N ) |
|
| 45 | 11 43 8 44 | syl3anc | |- ( ph -> O : ( X X. Y ) --> U. N ) |
| 46 | 45 | feqmptd | |- ( ph -> O = ( y e. ( X X. Y ) |-> ( O ` y ) ) ) |
| 47 | fveq2 | |- ( y = <. A , B >. -> ( O ` y ) = ( O ` <. A , B >. ) ) |
|
| 48 | df-ov | |- ( A O B ) = ( O ` <. A , B >. ) |
|
| 49 | 47 48 | eqtr4di | |- ( y = <. A , B >. -> ( O ` y ) = ( A O B ) ) |
| 50 | 12 39 46 49 | fmptco | |- ( ph -> ( O o. ( x e. Z |-> <. A , B >. ) ) = ( x e. Z |-> ( A O B ) ) ) |
| 51 | 50 | fveq2d | |- ( ph -> ( ( N fLimf L ) ` ( O o. ( x e. Z |-> <. A , B >. ) ) ) = ( ( N fLimf L ) ` ( x e. Z |-> ( A O B ) ) ) ) |
| 52 | 38 51 | eleqtrd | |- ( ph -> ( O ` <. R , S >. ) e. ( ( N fLimf L ) ` ( x e. Z |-> ( A O B ) ) ) ) |
| 53 | 9 52 | eqeltrid | |- ( ph -> ( R O S ) e. ( ( N fLimf L ) ` ( x e. Z |-> ( A O B ) ) ) ) |