This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The finite partial sums of a function F are defined in a commutative monoid. (Contributed by Mario Carneiro, 2-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tsmslem1.b | |- B = ( Base ` G ) |
|
| tsmslem1.s | |- S = ( ~P A i^i Fin ) |
||
| tsmslem1.1 | |- ( ph -> G e. CMnd ) |
||
| tsmslem1.a | |- ( ph -> A e. W ) |
||
| tsmslem1.f | |- ( ph -> F : A --> B ) |
||
| Assertion | tsmslem1 | |- ( ( ph /\ X e. S ) -> ( G gsum ( F |` X ) ) e. B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tsmslem1.b | |- B = ( Base ` G ) |
|
| 2 | tsmslem1.s | |- S = ( ~P A i^i Fin ) |
|
| 3 | tsmslem1.1 | |- ( ph -> G e. CMnd ) |
|
| 4 | tsmslem1.a | |- ( ph -> A e. W ) |
|
| 5 | tsmslem1.f | |- ( ph -> F : A --> B ) |
|
| 6 | eqid | |- ( 0g ` G ) = ( 0g ` G ) |
|
| 7 | 3 | adantr | |- ( ( ph /\ X e. S ) -> G e. CMnd ) |
| 8 | simpr | |- ( ( ph /\ X e. S ) -> X e. S ) |
|
| 9 | 5 | adantr | |- ( ( ph /\ X e. S ) -> F : A --> B ) |
| 10 | 8 2 | eleqtrdi | |- ( ( ph /\ X e. S ) -> X e. ( ~P A i^i Fin ) ) |
| 11 | elfpw | |- ( X e. ( ~P A i^i Fin ) <-> ( X C_ A /\ X e. Fin ) ) |
|
| 12 | 11 | simplbi | |- ( X e. ( ~P A i^i Fin ) -> X C_ A ) |
| 13 | 10 12 | syl | |- ( ( ph /\ X e. S ) -> X C_ A ) |
| 14 | 9 13 | fssresd | |- ( ( ph /\ X e. S ) -> ( F |` X ) : X --> B ) |
| 15 | 10 | elin2d | |- ( ( ph /\ X e. S ) -> X e. Fin ) |
| 16 | fvexd | |- ( ( ph /\ X e. S ) -> ( 0g ` G ) e. _V ) |
|
| 17 | 14 15 16 | fdmfifsupp | |- ( ( ph /\ X e. S ) -> ( F |` X ) finSupp ( 0g ` G ) ) |
| 18 | 1 6 7 8 14 17 | gsumcl | |- ( ( ph /\ X e. S ) -> ( G gsum ( F |` X ) ) e. B ) |