This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Limit of a ratio function. (Contributed by Scott Fenton, 16-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | divcnvshft.1 | |- Z = ( ZZ>= ` M ) |
|
| divcnvshft.2 | |- ( ph -> M e. ZZ ) |
||
| divcnvshft.3 | |- ( ph -> A e. CC ) |
||
| divcnvshft.4 | |- ( ph -> B e. ZZ ) |
||
| divcnvshft.5 | |- ( ph -> F e. V ) |
||
| divcnvshft.6 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) = ( A / ( k + B ) ) ) |
||
| Assertion | divcnvshft | |- ( ph -> F ~~> 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | divcnvshft.1 | |- Z = ( ZZ>= ` M ) |
|
| 2 | divcnvshft.2 | |- ( ph -> M e. ZZ ) |
|
| 3 | divcnvshft.3 | |- ( ph -> A e. CC ) |
|
| 4 | divcnvshft.4 | |- ( ph -> B e. ZZ ) |
|
| 5 | divcnvshft.5 | |- ( ph -> F e. V ) |
|
| 6 | divcnvshft.6 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) = ( A / ( k + B ) ) ) |
|
| 7 | divcnv | |- ( A e. CC -> ( m e. NN |-> ( A / m ) ) ~~> 0 ) |
|
| 8 | 3 7 | syl | |- ( ph -> ( m e. NN |-> ( A / m ) ) ~~> 0 ) |
| 9 | nnssz | |- NN C_ ZZ |
|
| 10 | resmpt | |- ( NN C_ ZZ -> ( ( m e. ZZ |-> ( A / m ) ) |` NN ) = ( m e. NN |-> ( A / m ) ) ) |
|
| 11 | 9 10 | ax-mp | |- ( ( m e. ZZ |-> ( A / m ) ) |` NN ) = ( m e. NN |-> ( A / m ) ) |
| 12 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 13 | 12 | reseq2i | |- ( ( m e. ZZ |-> ( A / m ) ) |` NN ) = ( ( m e. ZZ |-> ( A / m ) ) |` ( ZZ>= ` 1 ) ) |
| 14 | 11 13 | eqtr3i | |- ( m e. NN |-> ( A / m ) ) = ( ( m e. ZZ |-> ( A / m ) ) |` ( ZZ>= ` 1 ) ) |
| 15 | 14 | breq1i | |- ( ( m e. NN |-> ( A / m ) ) ~~> 0 <-> ( ( m e. ZZ |-> ( A / m ) ) |` ( ZZ>= ` 1 ) ) ~~> 0 ) |
| 16 | 1z | |- 1 e. ZZ |
|
| 17 | zex | |- ZZ e. _V |
|
| 18 | 17 | mptex | |- ( m e. ZZ |-> ( A / m ) ) e. _V |
| 19 | climres | |- ( ( 1 e. ZZ /\ ( m e. ZZ |-> ( A / m ) ) e. _V ) -> ( ( ( m e. ZZ |-> ( A / m ) ) |` ( ZZ>= ` 1 ) ) ~~> 0 <-> ( m e. ZZ |-> ( A / m ) ) ~~> 0 ) ) |
|
| 20 | 16 18 19 | mp2an | |- ( ( ( m e. ZZ |-> ( A / m ) ) |` ( ZZ>= ` 1 ) ) ~~> 0 <-> ( m e. ZZ |-> ( A / m ) ) ~~> 0 ) |
| 21 | 15 20 | bitri | |- ( ( m e. NN |-> ( A / m ) ) ~~> 0 <-> ( m e. ZZ |-> ( A / m ) ) ~~> 0 ) |
| 22 | 8 21 | sylib | |- ( ph -> ( m e. ZZ |-> ( A / m ) ) ~~> 0 ) |
| 23 | 18 | a1i | |- ( ph -> ( m e. ZZ |-> ( A / m ) ) e. _V ) |
| 24 | uzssz | |- ( ZZ>= ` M ) C_ ZZ |
|
| 25 | 1 24 | eqsstri | |- Z C_ ZZ |
| 26 | 25 | sseli | |- ( k e. Z -> k e. ZZ ) |
| 27 | 26 | adantl | |- ( ( ph /\ k e. Z ) -> k e. ZZ ) |
| 28 | 4 | adantr | |- ( ( ph /\ k e. Z ) -> B e. ZZ ) |
| 29 | 27 28 | zaddcld | |- ( ( ph /\ k e. Z ) -> ( k + B ) e. ZZ ) |
| 30 | oveq2 | |- ( m = ( k + B ) -> ( A / m ) = ( A / ( k + B ) ) ) |
|
| 31 | eqid | |- ( m e. ZZ |-> ( A / m ) ) = ( m e. ZZ |-> ( A / m ) ) |
|
| 32 | ovex | |- ( A / ( k + B ) ) e. _V |
|
| 33 | 30 31 32 | fvmpt | |- ( ( k + B ) e. ZZ -> ( ( m e. ZZ |-> ( A / m ) ) ` ( k + B ) ) = ( A / ( k + B ) ) ) |
| 34 | 29 33 | syl | |- ( ( ph /\ k e. Z ) -> ( ( m e. ZZ |-> ( A / m ) ) ` ( k + B ) ) = ( A / ( k + B ) ) ) |
| 35 | 34 6 | eqtr4d | |- ( ( ph /\ k e. Z ) -> ( ( m e. ZZ |-> ( A / m ) ) ` ( k + B ) ) = ( F ` k ) ) |
| 36 | 1 2 4 5 23 35 | climshft2 | |- ( ph -> ( F ~~> 0 <-> ( m e. ZZ |-> ( A / m ) ) ~~> 0 ) ) |
| 37 | 22 36 | mpbird | |- ( ph -> F ~~> 0 ) |