This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sum of the reciprocals of the triangle numbers converge to two. This is Metamath 100 proof #42. (Contributed by Scott Fenton, 23-Apr-2014) (Revised by Mario Carneiro, 22-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | trirecip | |- sum_ k e. NN ( 2 / ( k x. ( k + 1 ) ) ) = 2 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2cnd | |- ( k e. NN -> 2 e. CC ) |
|
| 2 | peano2nn | |- ( k e. NN -> ( k + 1 ) e. NN ) |
|
| 3 | nnmulcl | |- ( ( k e. NN /\ ( k + 1 ) e. NN ) -> ( k x. ( k + 1 ) ) e. NN ) |
|
| 4 | 2 3 | mpdan | |- ( k e. NN -> ( k x. ( k + 1 ) ) e. NN ) |
| 5 | 4 | nncnd | |- ( k e. NN -> ( k x. ( k + 1 ) ) e. CC ) |
| 6 | 4 | nnne0d | |- ( k e. NN -> ( k x. ( k + 1 ) ) =/= 0 ) |
| 7 | 1 5 6 | divrecd | |- ( k e. NN -> ( 2 / ( k x. ( k + 1 ) ) ) = ( 2 x. ( 1 / ( k x. ( k + 1 ) ) ) ) ) |
| 8 | 7 | sumeq2i | |- sum_ k e. NN ( 2 / ( k x. ( k + 1 ) ) ) = sum_ k e. NN ( 2 x. ( 1 / ( k x. ( k + 1 ) ) ) ) |
| 9 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 10 | 1zzd | |- ( T. -> 1 e. ZZ ) |
|
| 11 | id | |- ( n = k -> n = k ) |
|
| 12 | oveq1 | |- ( n = k -> ( n + 1 ) = ( k + 1 ) ) |
|
| 13 | 11 12 | oveq12d | |- ( n = k -> ( n x. ( n + 1 ) ) = ( k x. ( k + 1 ) ) ) |
| 14 | 13 | oveq2d | |- ( n = k -> ( 1 / ( n x. ( n + 1 ) ) ) = ( 1 / ( k x. ( k + 1 ) ) ) ) |
| 15 | eqid | |- ( n e. NN |-> ( 1 / ( n x. ( n + 1 ) ) ) ) = ( n e. NN |-> ( 1 / ( n x. ( n + 1 ) ) ) ) |
|
| 16 | ovex | |- ( 1 / ( k x. ( k + 1 ) ) ) e. _V |
|
| 17 | 14 15 16 | fvmpt | |- ( k e. NN -> ( ( n e. NN |-> ( 1 / ( n x. ( n + 1 ) ) ) ) ` k ) = ( 1 / ( k x. ( k + 1 ) ) ) ) |
| 18 | 17 | adantl | |- ( ( T. /\ k e. NN ) -> ( ( n e. NN |-> ( 1 / ( n x. ( n + 1 ) ) ) ) ` k ) = ( 1 / ( k x. ( k + 1 ) ) ) ) |
| 19 | 4 | nnrecred | |- ( k e. NN -> ( 1 / ( k x. ( k + 1 ) ) ) e. RR ) |
| 20 | 19 | recnd | |- ( k e. NN -> ( 1 / ( k x. ( k + 1 ) ) ) e. CC ) |
| 21 | 20 | adantl | |- ( ( T. /\ k e. NN ) -> ( 1 / ( k x. ( k + 1 ) ) ) e. CC ) |
| 22 | 15 | trireciplem | |- seq 1 ( + , ( n e. NN |-> ( 1 / ( n x. ( n + 1 ) ) ) ) ) ~~> 1 |
| 23 | 22 | a1i | |- ( T. -> seq 1 ( + , ( n e. NN |-> ( 1 / ( n x. ( n + 1 ) ) ) ) ) ~~> 1 ) |
| 24 | climrel | |- Rel ~~> |
|
| 25 | 24 | releldmi | |- ( seq 1 ( + , ( n e. NN |-> ( 1 / ( n x. ( n + 1 ) ) ) ) ) ~~> 1 -> seq 1 ( + , ( n e. NN |-> ( 1 / ( n x. ( n + 1 ) ) ) ) ) e. dom ~~> ) |
| 26 | 23 25 | syl | |- ( T. -> seq 1 ( + , ( n e. NN |-> ( 1 / ( n x. ( n + 1 ) ) ) ) ) e. dom ~~> ) |
| 27 | 2cnd | |- ( T. -> 2 e. CC ) |
|
| 28 | 9 10 18 21 26 27 | isummulc2 | |- ( T. -> ( 2 x. sum_ k e. NN ( 1 / ( k x. ( k + 1 ) ) ) ) = sum_ k e. NN ( 2 x. ( 1 / ( k x. ( k + 1 ) ) ) ) ) |
| 29 | 9 10 18 21 23 | isumclim | |- ( T. -> sum_ k e. NN ( 1 / ( k x. ( k + 1 ) ) ) = 1 ) |
| 30 | 29 | oveq2d | |- ( T. -> ( 2 x. sum_ k e. NN ( 1 / ( k x. ( k + 1 ) ) ) ) = ( 2 x. 1 ) ) |
| 31 | 28 30 | eqtr3d | |- ( T. -> sum_ k e. NN ( 2 x. ( 1 / ( k x. ( k + 1 ) ) ) ) = ( 2 x. 1 ) ) |
| 32 | 31 | mptru | |- sum_ k e. NN ( 2 x. ( 1 / ( k x. ( k + 1 ) ) ) ) = ( 2 x. 1 ) |
| 33 | 2t1e2 | |- ( 2 x. 1 ) = 2 |
|
| 34 | 8 32 33 | 3eqtri | |- sum_ k e. NN ( 2 / ( k x. ( k + 1 ) ) ) = 2 |