This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Sum of a telescoping series. (Contributed by Scott Fenton, 24-Apr-2014) (Revised by Mario Carneiro, 2-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | telfsum.1 | |- ( k = j -> A = B ) |
|
| telfsum.2 | |- ( k = ( j + 1 ) -> A = C ) |
||
| telfsum.3 | |- ( k = M -> A = D ) |
||
| telfsum.4 | |- ( k = ( N + 1 ) -> A = E ) |
||
| telfsum.5 | |- ( ph -> N e. ZZ ) |
||
| telfsum.6 | |- ( ph -> ( N + 1 ) e. ( ZZ>= ` M ) ) |
||
| telfsum.7 | |- ( ( ph /\ k e. ( M ... ( N + 1 ) ) ) -> A e. CC ) |
||
| Assertion | telfsum | |- ( ph -> sum_ j e. ( M ... N ) ( B - C ) = ( D - E ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | telfsum.1 | |- ( k = j -> A = B ) |
|
| 2 | telfsum.2 | |- ( k = ( j + 1 ) -> A = C ) |
|
| 3 | telfsum.3 | |- ( k = M -> A = D ) |
|
| 4 | telfsum.4 | |- ( k = ( N + 1 ) -> A = E ) |
|
| 5 | telfsum.5 | |- ( ph -> N e. ZZ ) |
|
| 6 | telfsum.6 | |- ( ph -> ( N + 1 ) e. ( ZZ>= ` M ) ) |
|
| 7 | telfsum.7 | |- ( ( ph /\ k e. ( M ... ( N + 1 ) ) ) -> A e. CC ) |
|
| 8 | fzval3 | |- ( N e. ZZ -> ( M ... N ) = ( M ..^ ( N + 1 ) ) ) |
|
| 9 | 5 8 | syl | |- ( ph -> ( M ... N ) = ( M ..^ ( N + 1 ) ) ) |
| 10 | 9 | sumeq1d | |- ( ph -> sum_ j e. ( M ... N ) ( B - C ) = sum_ j e. ( M ..^ ( N + 1 ) ) ( B - C ) ) |
| 11 | 1 2 3 4 6 7 | telfsumo | |- ( ph -> sum_ j e. ( M ..^ ( N + 1 ) ) ( B - C ) = ( D - E ) ) |
| 12 | 10 11 | eqtrd | |- ( ph -> sum_ j e. ( M ... N ) ( B - C ) = ( D - E ) ) |