This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The symmetric group on a pair is the symmetric group S_2 consisting of the identity and the transposition. Notice that this statement is valid for proper pairs only. In the case that both elements are identical, i.e., the pairs are actually singletons, this theorem would be about S_1, see Theorem symg1bas . (Contributed by AV, 9-Dec-2018) (Proof shortened by AV, 16-Jun-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | symg1bas.1 | |- G = ( SymGrp ` A ) |
|
| symg1bas.2 | |- B = ( Base ` G ) |
||
| symg2bas.0 | |- A = { I , J } |
||
| Assertion | symg2bas | |- ( ( I e. V /\ J e. W ) -> B = { { <. I , I >. , <. J , J >. } , { <. I , J >. , <. J , I >. } } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | symg1bas.1 | |- G = ( SymGrp ` A ) |
|
| 2 | symg1bas.2 | |- B = ( Base ` G ) |
|
| 3 | symg2bas.0 | |- A = { I , J } |
|
| 4 | eqid | |- ( SymGrp ` { J } ) = ( SymGrp ` { J } ) |
|
| 5 | eqid | |- ( Base ` ( SymGrp ` { J } ) ) = ( Base ` ( SymGrp ` { J } ) ) |
|
| 6 | eqid | |- { J } = { J } |
|
| 7 | 4 5 6 | symg1bas | |- ( J e. W -> ( Base ` ( SymGrp ` { J } ) ) = { { <. J , J >. } } ) |
| 8 | 7 | ad2antll | |- ( ( I = J /\ ( I e. V /\ J e. W ) ) -> ( Base ` ( SymGrp ` { J } ) ) = { { <. J , J >. } } ) |
| 9 | df-pr | |- { I , J } = ( { I } u. { J } ) |
|
| 10 | sneq | |- ( I = J -> { I } = { J } ) |
|
| 11 | 10 | uneq1d | |- ( I = J -> ( { I } u. { J } ) = ( { J } u. { J } ) ) |
| 12 | 11 | adantr | |- ( ( I = J /\ ( I e. V /\ J e. W ) ) -> ( { I } u. { J } ) = ( { J } u. { J } ) ) |
| 13 | unidm | |- ( { J } u. { J } ) = { J } |
|
| 14 | 12 13 | eqtrdi | |- ( ( I = J /\ ( I e. V /\ J e. W ) ) -> ( { I } u. { J } ) = { J } ) |
| 15 | 9 14 | eqtrid | |- ( ( I = J /\ ( I e. V /\ J e. W ) ) -> { I , J } = { J } ) |
| 16 | 3 15 | eqtrid | |- ( ( I = J /\ ( I e. V /\ J e. W ) ) -> A = { J } ) |
| 17 | 16 | fveq2d | |- ( ( I = J /\ ( I e. V /\ J e. W ) ) -> ( SymGrp ` A ) = ( SymGrp ` { J } ) ) |
| 18 | 1 17 | eqtrid | |- ( ( I = J /\ ( I e. V /\ J e. W ) ) -> G = ( SymGrp ` { J } ) ) |
| 19 | 18 | fveq2d | |- ( ( I = J /\ ( I e. V /\ J e. W ) ) -> ( Base ` G ) = ( Base ` ( SymGrp ` { J } ) ) ) |
| 20 | 2 19 | eqtrid | |- ( ( I = J /\ ( I e. V /\ J e. W ) ) -> B = ( Base ` ( SymGrp ` { J } ) ) ) |
| 21 | id | |- ( I = J -> I = J ) |
|
| 22 | 21 21 | opeq12d | |- ( I = J -> <. I , I >. = <. J , J >. ) |
| 23 | 22 | adantr | |- ( ( I = J /\ ( I e. V /\ J e. W ) ) -> <. I , I >. = <. J , J >. ) |
| 24 | 23 | preq1d | |- ( ( I = J /\ ( I e. V /\ J e. W ) ) -> { <. I , I >. , <. J , J >. } = { <. J , J >. , <. J , J >. } ) |
| 25 | eqid | |- <. J , J >. = <. J , J >. |
|
| 26 | opex | |- <. J , J >. e. _V |
|
| 27 | 26 26 | preqsn | |- ( { <. J , J >. , <. J , J >. } = { <. J , J >. } <-> ( <. J , J >. = <. J , J >. /\ <. J , J >. = <. J , J >. ) ) |
| 28 | 25 25 27 | mpbir2an | |- { <. J , J >. , <. J , J >. } = { <. J , J >. } |
| 29 | 24 28 | eqtrdi | |- ( ( I = J /\ ( I e. V /\ J e. W ) ) -> { <. I , I >. , <. J , J >. } = { <. J , J >. } ) |
| 30 | opeq1 | |- ( I = J -> <. I , J >. = <. J , J >. ) |
|
| 31 | opeq2 | |- ( I = J -> <. J , I >. = <. J , J >. ) |
|
| 32 | 30 31 | preq12d | |- ( I = J -> { <. I , J >. , <. J , I >. } = { <. J , J >. , <. J , J >. } ) |
| 33 | 32 28 | eqtrdi | |- ( I = J -> { <. I , J >. , <. J , I >. } = { <. J , J >. } ) |
| 34 | 33 | adantr | |- ( ( I = J /\ ( I e. V /\ J e. W ) ) -> { <. I , J >. , <. J , I >. } = { <. J , J >. } ) |
| 35 | 29 34 | preq12d | |- ( ( I = J /\ ( I e. V /\ J e. W ) ) -> { { <. I , I >. , <. J , J >. } , { <. I , J >. , <. J , I >. } } = { { <. J , J >. } , { <. J , J >. } } ) |
| 36 | eqid | |- { <. J , J >. } = { <. J , J >. } |
|
| 37 | snex | |- { <. J , J >. } e. _V |
|
| 38 | 37 37 | preqsn | |- ( { { <. J , J >. } , { <. J , J >. } } = { { <. J , J >. } } <-> ( { <. J , J >. } = { <. J , J >. } /\ { <. J , J >. } = { <. J , J >. } ) ) |
| 39 | 36 36 38 | mpbir2an | |- { { <. J , J >. } , { <. J , J >. } } = { { <. J , J >. } } |
| 40 | 35 39 | eqtrdi | |- ( ( I = J /\ ( I e. V /\ J e. W ) ) -> { { <. I , I >. , <. J , J >. } , { <. I , J >. , <. J , I >. } } = { { <. J , J >. } } ) |
| 41 | 8 20 40 | 3eqtr4d | |- ( ( I = J /\ ( I e. V /\ J e. W ) ) -> B = { { <. I , I >. , <. J , J >. } , { <. I , J >. , <. J , I >. } } ) |
| 42 | 2 | fvexi | |- B e. _V |
| 43 | 42 | a1i | |- ( ( -. I = J /\ ( I e. V /\ J e. W ) ) -> B e. _V ) |
| 44 | neqne | |- ( -. I = J -> I =/= J ) |
|
| 45 | 44 | anim2i | |- ( ( ( I e. V /\ J e. W ) /\ -. I = J ) -> ( ( I e. V /\ J e. W ) /\ I =/= J ) ) |
| 46 | df-3an | |- ( ( I e. V /\ J e. W /\ I =/= J ) <-> ( ( I e. V /\ J e. W ) /\ I =/= J ) ) |
|
| 47 | 45 46 | sylibr | |- ( ( ( I e. V /\ J e. W ) /\ -. I = J ) -> ( I e. V /\ J e. W /\ I =/= J ) ) |
| 48 | 47 | ancoms | |- ( ( -. I = J /\ ( I e. V /\ J e. W ) ) -> ( I e. V /\ J e. W /\ I =/= J ) ) |
| 49 | 1 2 3 | symg2hash | |- ( ( I e. V /\ J e. W /\ I =/= J ) -> ( # ` B ) = 2 ) |
| 50 | 48 49 | syl | |- ( ( -. I = J /\ ( I e. V /\ J e. W ) ) -> ( # ` B ) = 2 ) |
| 51 | id | |- ( I e. V -> I e. V ) |
|
| 52 | 51 | ancri | |- ( I e. V -> ( I e. V /\ I e. V ) ) |
| 53 | id | |- ( J e. W -> J e. W ) |
|
| 54 | 53 | ancri | |- ( J e. W -> ( J e. W /\ J e. W ) ) |
| 55 | 52 54 | anim12i | |- ( ( I e. V /\ J e. W ) -> ( ( I e. V /\ I e. V ) /\ ( J e. W /\ J e. W ) ) ) |
| 56 | df-ne | |- ( I =/= J <-> -. I = J ) |
|
| 57 | id | |- ( I =/= J -> I =/= J ) |
|
| 58 | 57 | ancri | |- ( I =/= J -> ( I =/= J /\ I =/= J ) ) |
| 59 | 56 58 | sylbir | |- ( -. I = J -> ( I =/= J /\ I =/= J ) ) |
| 60 | f1oprg | |- ( ( ( I e. V /\ I e. V ) /\ ( J e. W /\ J e. W ) ) -> ( ( I =/= J /\ I =/= J ) -> { <. I , I >. , <. J , J >. } : { I , J } -1-1-onto-> { I , J } ) ) |
|
| 61 | 60 | imp | |- ( ( ( ( I e. V /\ I e. V ) /\ ( J e. W /\ J e. W ) ) /\ ( I =/= J /\ I =/= J ) ) -> { <. I , I >. , <. J , J >. } : { I , J } -1-1-onto-> { I , J } ) |
| 62 | 55 59 61 | syl2anr | |- ( ( -. I = J /\ ( I e. V /\ J e. W ) ) -> { <. I , I >. , <. J , J >. } : { I , J } -1-1-onto-> { I , J } ) |
| 63 | eqidd | |- ( A = { I , J } -> { <. I , I >. , <. J , J >. } = { <. I , I >. , <. J , J >. } ) |
|
| 64 | id | |- ( A = { I , J } -> A = { I , J } ) |
|
| 65 | 63 64 64 | f1oeq123d | |- ( A = { I , J } -> ( { <. I , I >. , <. J , J >. } : A -1-1-onto-> A <-> { <. I , I >. , <. J , J >. } : { I , J } -1-1-onto-> { I , J } ) ) |
| 66 | 3 65 | ax-mp | |- ( { <. I , I >. , <. J , J >. } : A -1-1-onto-> A <-> { <. I , I >. , <. J , J >. } : { I , J } -1-1-onto-> { I , J } ) |
| 67 | 62 66 | sylibr | |- ( ( -. I = J /\ ( I e. V /\ J e. W ) ) -> { <. I , I >. , <. J , J >. } : A -1-1-onto-> A ) |
| 68 | prex | |- { <. I , I >. , <. J , J >. } e. _V |
|
| 69 | 1 2 | elsymgbas2 | |- ( { <. I , I >. , <. J , J >. } e. _V -> ( { <. I , I >. , <. J , J >. } e. B <-> { <. I , I >. , <. J , J >. } : A -1-1-onto-> A ) ) |
| 70 | 68 69 | ax-mp | |- ( { <. I , I >. , <. J , J >. } e. B <-> { <. I , I >. , <. J , J >. } : A -1-1-onto-> A ) |
| 71 | 67 70 | sylibr | |- ( ( -. I = J /\ ( I e. V /\ J e. W ) ) -> { <. I , I >. , <. J , J >. } e. B ) |
| 72 | f1oprswap | |- ( ( I e. V /\ J e. W ) -> { <. I , J >. , <. J , I >. } : { I , J } -1-1-onto-> { I , J } ) |
|
| 73 | eqidd | |- ( A = { I , J } -> { <. I , J >. , <. J , I >. } = { <. I , J >. , <. J , I >. } ) |
|
| 74 | 73 64 64 | f1oeq123d | |- ( A = { I , J } -> ( { <. I , J >. , <. J , I >. } : A -1-1-onto-> A <-> { <. I , J >. , <. J , I >. } : { I , J } -1-1-onto-> { I , J } ) ) |
| 75 | 3 74 | ax-mp | |- ( { <. I , J >. , <. J , I >. } : A -1-1-onto-> A <-> { <. I , J >. , <. J , I >. } : { I , J } -1-1-onto-> { I , J } ) |
| 76 | 72 75 | sylibr | |- ( ( I e. V /\ J e. W ) -> { <. I , J >. , <. J , I >. } : A -1-1-onto-> A ) |
| 77 | 76 | adantl | |- ( ( -. I = J /\ ( I e. V /\ J e. W ) ) -> { <. I , J >. , <. J , I >. } : A -1-1-onto-> A ) |
| 78 | prex | |- { <. I , J >. , <. J , I >. } e. _V |
|
| 79 | 1 2 | elsymgbas2 | |- ( { <. I , J >. , <. J , I >. } e. _V -> ( { <. I , J >. , <. J , I >. } e. B <-> { <. I , J >. , <. J , I >. } : A -1-1-onto-> A ) ) |
| 80 | 78 79 | ax-mp | |- ( { <. I , J >. , <. J , I >. } e. B <-> { <. I , J >. , <. J , I >. } : A -1-1-onto-> A ) |
| 81 | 77 80 | sylibr | |- ( ( -. I = J /\ ( I e. V /\ J e. W ) ) -> { <. I , J >. , <. J , I >. } e. B ) |
| 82 | opex | |- <. I , I >. e. _V |
|
| 83 | 82 26 | pm3.2i | |- ( <. I , I >. e. _V /\ <. J , J >. e. _V ) |
| 84 | opex | |- <. I , J >. e. _V |
|
| 85 | opex | |- <. J , I >. e. _V |
|
| 86 | 84 85 | pm3.2i | |- ( <. I , J >. e. _V /\ <. J , I >. e. _V ) |
| 87 | 83 86 | pm3.2i | |- ( ( <. I , I >. e. _V /\ <. J , J >. e. _V ) /\ ( <. I , J >. e. _V /\ <. J , I >. e. _V ) ) |
| 88 | opthg2 | |- ( ( I e. V /\ J e. W ) -> ( <. I , I >. = <. I , J >. <-> ( I = I /\ I = J ) ) ) |
|
| 89 | eqtr | |- ( ( I = I /\ I = J ) -> I = J ) |
|
| 90 | 88 89 | biimtrdi | |- ( ( I e. V /\ J e. W ) -> ( <. I , I >. = <. I , J >. -> I = J ) ) |
| 91 | 90 | necon3d | |- ( ( I e. V /\ J e. W ) -> ( I =/= J -> <. I , I >. =/= <. I , J >. ) ) |
| 92 | 91 | com12 | |- ( I =/= J -> ( ( I e. V /\ J e. W ) -> <. I , I >. =/= <. I , J >. ) ) |
| 93 | 56 92 | sylbir | |- ( -. I = J -> ( ( I e. V /\ J e. W ) -> <. I , I >. =/= <. I , J >. ) ) |
| 94 | 93 | imp | |- ( ( -. I = J /\ ( I e. V /\ J e. W ) ) -> <. I , I >. =/= <. I , J >. ) |
| 95 | 52 | adantr | |- ( ( I e. V /\ J e. W ) -> ( I e. V /\ I e. V ) ) |
| 96 | opthg | |- ( ( I e. V /\ I e. V ) -> ( <. I , I >. = <. J , I >. <-> ( I = J /\ I = I ) ) ) |
|
| 97 | 95 96 | syl | |- ( ( I e. V /\ J e. W ) -> ( <. I , I >. = <. J , I >. <-> ( I = J /\ I = I ) ) ) |
| 98 | simpl | |- ( ( I = J /\ I = I ) -> I = J ) |
|
| 99 | 97 98 | biimtrdi | |- ( ( I e. V /\ J e. W ) -> ( <. I , I >. = <. J , I >. -> I = J ) ) |
| 100 | 99 | necon3d | |- ( ( I e. V /\ J e. W ) -> ( I =/= J -> <. I , I >. =/= <. J , I >. ) ) |
| 101 | 100 | com12 | |- ( I =/= J -> ( ( I e. V /\ J e. W ) -> <. I , I >. =/= <. J , I >. ) ) |
| 102 | 56 101 | sylbir | |- ( -. I = J -> ( ( I e. V /\ J e. W ) -> <. I , I >. =/= <. J , I >. ) ) |
| 103 | 102 | imp | |- ( ( -. I = J /\ ( I e. V /\ J e. W ) ) -> <. I , I >. =/= <. J , I >. ) |
| 104 | 94 103 | jca | |- ( ( -. I = J /\ ( I e. V /\ J e. W ) ) -> ( <. I , I >. =/= <. I , J >. /\ <. I , I >. =/= <. J , I >. ) ) |
| 105 | 104 | orcd | |- ( ( -. I = J /\ ( I e. V /\ J e. W ) ) -> ( ( <. I , I >. =/= <. I , J >. /\ <. I , I >. =/= <. J , I >. ) \/ ( <. J , J >. =/= <. I , J >. /\ <. J , J >. =/= <. J , I >. ) ) ) |
| 106 | prneimg | |- ( ( ( <. I , I >. e. _V /\ <. J , J >. e. _V ) /\ ( <. I , J >. e. _V /\ <. J , I >. e. _V ) ) -> ( ( ( <. I , I >. =/= <. I , J >. /\ <. I , I >. =/= <. J , I >. ) \/ ( <. J , J >. =/= <. I , J >. /\ <. J , J >. =/= <. J , I >. ) ) -> { <. I , I >. , <. J , J >. } =/= { <. I , J >. , <. J , I >. } ) ) |
|
| 107 | 87 105 106 | mpsyl | |- ( ( -. I = J /\ ( I e. V /\ J e. W ) ) -> { <. I , I >. , <. J , J >. } =/= { <. I , J >. , <. J , I >. } ) |
| 108 | hash2prd | |- ( ( B e. _V /\ ( # ` B ) = 2 ) -> ( ( { <. I , I >. , <. J , J >. } e. B /\ { <. I , J >. , <. J , I >. } e. B /\ { <. I , I >. , <. J , J >. } =/= { <. I , J >. , <. J , I >. } ) -> B = { { <. I , I >. , <. J , J >. } , { <. I , J >. , <. J , I >. } } ) ) |
|
| 109 | 108 | imp | |- ( ( ( B e. _V /\ ( # ` B ) = 2 ) /\ ( { <. I , I >. , <. J , J >. } e. B /\ { <. I , J >. , <. J , I >. } e. B /\ { <. I , I >. , <. J , J >. } =/= { <. I , J >. , <. J , I >. } ) ) -> B = { { <. I , I >. , <. J , J >. } , { <. I , J >. , <. J , I >. } } ) |
| 110 | 43 50 71 81 107 109 | syl23anc | |- ( ( -. I = J /\ ( I e. V /\ J e. W ) ) -> B = { { <. I , I >. , <. J , J >. } , { <. I , J >. , <. J , I >. } } ) |
| 111 | 41 110 | pm2.61ian | |- ( ( I e. V /\ J e. W ) -> B = { { <. I , I >. , <. J , J >. } , { <. I , J >. , <. J , I >. } } ) |