This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The symmetric group on a (proper) pair has cardinality 2 . (Contributed by AV, 9-Dec-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | symg1bas.1 | |- G = ( SymGrp ` A ) |
|
| symg1bas.2 | |- B = ( Base ` G ) |
||
| symg2bas.0 | |- A = { I , J } |
||
| Assertion | symg2hash | |- ( ( I e. V /\ J e. W /\ I =/= J ) -> ( # ` B ) = 2 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | symg1bas.1 | |- G = ( SymGrp ` A ) |
|
| 2 | symg1bas.2 | |- B = ( Base ` G ) |
|
| 3 | symg2bas.0 | |- A = { I , J } |
|
| 4 | prfi | |- { I , J } e. Fin |
|
| 5 | 3 4 | eqeltri | |- A e. Fin |
| 6 | 1 2 | symghash | |- ( A e. Fin -> ( # ` B ) = ( ! ` ( # ` A ) ) ) |
| 7 | 5 6 | ax-mp | |- ( # ` B ) = ( ! ` ( # ` A ) ) |
| 8 | 3 | fveq2i | |- ( # ` A ) = ( # ` { I , J } ) |
| 9 | elex | |- ( I e. V -> I e. _V ) |
|
| 10 | elex | |- ( J e. W -> J e. _V ) |
|
| 11 | id | |- ( I =/= J -> I =/= J ) |
|
| 12 | 9 10 11 | 3anim123i | |- ( ( I e. V /\ J e. W /\ I =/= J ) -> ( I e. _V /\ J e. _V /\ I =/= J ) ) |
| 13 | hashprb | |- ( ( I e. _V /\ J e. _V /\ I =/= J ) <-> ( # ` { I , J } ) = 2 ) |
|
| 14 | 12 13 | sylib | |- ( ( I e. V /\ J e. W /\ I =/= J ) -> ( # ` { I , J } ) = 2 ) |
| 15 | 8 14 | eqtrid | |- ( ( I e. V /\ J e. W /\ I =/= J ) -> ( # ` A ) = 2 ) |
| 16 | 15 | fveq2d | |- ( ( I e. V /\ J e. W /\ I =/= J ) -> ( ! ` ( # ` A ) ) = ( ! ` 2 ) ) |
| 17 | fac2 | |- ( ! ` 2 ) = 2 |
|
| 18 | 16 17 | eqtrdi | |- ( ( I e. V /\ J e. W /\ I =/= J ) -> ( ! ` ( # ` A ) ) = 2 ) |
| 19 | 7 18 | eqtrid | |- ( ( I e. V /\ J e. W /\ I =/= J ) -> ( # ` B ) = 2 ) |