This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two pairs are not equal if at least one element of the first pair is not contained in the second pair. (Contributed by Alexander van der Vekens, 13-Aug-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | prneimg | |- ( ( ( A e. U /\ B e. V ) /\ ( C e. X /\ D e. Y ) ) -> ( ( ( A =/= C /\ A =/= D ) \/ ( B =/= C /\ B =/= D ) ) -> { A , B } =/= { C , D } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | preq12bg | |- ( ( ( A e. U /\ B e. V ) /\ ( C e. X /\ D e. Y ) ) -> ( { A , B } = { C , D } <-> ( ( A = C /\ B = D ) \/ ( A = D /\ B = C ) ) ) ) |
|
| 2 | orddi | |- ( ( ( A = C /\ B = D ) \/ ( A = D /\ B = C ) ) <-> ( ( ( A = C \/ A = D ) /\ ( A = C \/ B = C ) ) /\ ( ( B = D \/ A = D ) /\ ( B = D \/ B = C ) ) ) ) |
|
| 3 | simpll | |- ( ( ( ( A = C \/ A = D ) /\ ( A = C \/ B = C ) ) /\ ( ( B = D \/ A = D ) /\ ( B = D \/ B = C ) ) ) -> ( A = C \/ A = D ) ) |
|
| 4 | pm1.4 | |- ( ( B = D \/ B = C ) -> ( B = C \/ B = D ) ) |
|
| 5 | 4 | ad2antll | |- ( ( ( ( A = C \/ A = D ) /\ ( A = C \/ B = C ) ) /\ ( ( B = D \/ A = D ) /\ ( B = D \/ B = C ) ) ) -> ( B = C \/ B = D ) ) |
| 6 | 3 5 | jca | |- ( ( ( ( A = C \/ A = D ) /\ ( A = C \/ B = C ) ) /\ ( ( B = D \/ A = D ) /\ ( B = D \/ B = C ) ) ) -> ( ( A = C \/ A = D ) /\ ( B = C \/ B = D ) ) ) |
| 7 | 2 6 | sylbi | |- ( ( ( A = C /\ B = D ) \/ ( A = D /\ B = C ) ) -> ( ( A = C \/ A = D ) /\ ( B = C \/ B = D ) ) ) |
| 8 | 1 7 | biimtrdi | |- ( ( ( A e. U /\ B e. V ) /\ ( C e. X /\ D e. Y ) ) -> ( { A , B } = { C , D } -> ( ( A = C \/ A = D ) /\ ( B = C \/ B = D ) ) ) ) |
| 9 | ianor | |- ( -. ( A =/= C /\ A =/= D ) <-> ( -. A =/= C \/ -. A =/= D ) ) |
|
| 10 | nne | |- ( -. A =/= C <-> A = C ) |
|
| 11 | nne | |- ( -. A =/= D <-> A = D ) |
|
| 12 | 10 11 | orbi12i | |- ( ( -. A =/= C \/ -. A =/= D ) <-> ( A = C \/ A = D ) ) |
| 13 | 9 12 | bitr2i | |- ( ( A = C \/ A = D ) <-> -. ( A =/= C /\ A =/= D ) ) |
| 14 | ianor | |- ( -. ( B =/= C /\ B =/= D ) <-> ( -. B =/= C \/ -. B =/= D ) ) |
|
| 15 | nne | |- ( -. B =/= C <-> B = C ) |
|
| 16 | nne | |- ( -. B =/= D <-> B = D ) |
|
| 17 | 15 16 | orbi12i | |- ( ( -. B =/= C \/ -. B =/= D ) <-> ( B = C \/ B = D ) ) |
| 18 | 14 17 | bitr2i | |- ( ( B = C \/ B = D ) <-> -. ( B =/= C /\ B =/= D ) ) |
| 19 | 13 18 | anbi12i | |- ( ( ( A = C \/ A = D ) /\ ( B = C \/ B = D ) ) <-> ( -. ( A =/= C /\ A =/= D ) /\ -. ( B =/= C /\ B =/= D ) ) ) |
| 20 | 8 19 | imbitrdi | |- ( ( ( A e. U /\ B e. V ) /\ ( C e. X /\ D e. Y ) ) -> ( { A , B } = { C , D } -> ( -. ( A =/= C /\ A =/= D ) /\ -. ( B =/= C /\ B =/= D ) ) ) ) |
| 21 | pm4.56 | |- ( ( -. ( A =/= C /\ A =/= D ) /\ -. ( B =/= C /\ B =/= D ) ) <-> -. ( ( A =/= C /\ A =/= D ) \/ ( B =/= C /\ B =/= D ) ) ) |
|
| 22 | 20 21 | imbitrdi | |- ( ( ( A e. U /\ B e. V ) /\ ( C e. X /\ D e. Y ) ) -> ( { A , B } = { C , D } -> -. ( ( A =/= C /\ A =/= D ) \/ ( B =/= C /\ B =/= D ) ) ) ) |
| 23 | 22 | necon2ad | |- ( ( ( A e. U /\ B e. V ) /\ ( C e. X /\ D e. Y ) ) -> ( ( ( A =/= C /\ A =/= D ) \/ ( B =/= C /\ B =/= D ) ) -> { A , B } =/= { C , D } ) ) |