This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A two-element swap is a bijection on a pair. (Contributed by Mario Carneiro, 23-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | f1oprswap | |- ( ( A e. V /\ B e. W ) -> { <. A , B >. , <. B , A >. } : { A , B } -1-1-onto-> { A , B } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1osng | |- ( ( A e. V /\ A e. V ) -> { <. A , A >. } : { A } -1-1-onto-> { A } ) |
|
| 2 | 1 | anidms | |- ( A e. V -> { <. A , A >. } : { A } -1-1-onto-> { A } ) |
| 3 | 2 | ad2antrr | |- ( ( ( A e. V /\ B e. W ) /\ A = B ) -> { <. A , A >. } : { A } -1-1-onto-> { A } ) |
| 4 | dfsn2 | |- { <. A , A >. } = { <. A , A >. , <. A , A >. } |
|
| 5 | opeq2 | |- ( A = B -> <. A , A >. = <. A , B >. ) |
|
| 6 | opeq1 | |- ( A = B -> <. A , A >. = <. B , A >. ) |
|
| 7 | 5 6 | preq12d | |- ( A = B -> { <. A , A >. , <. A , A >. } = { <. A , B >. , <. B , A >. } ) |
| 8 | 4 7 | eqtrid | |- ( A = B -> { <. A , A >. } = { <. A , B >. , <. B , A >. } ) |
| 9 | dfsn2 | |- { A } = { A , A } |
|
| 10 | preq2 | |- ( A = B -> { A , A } = { A , B } ) |
|
| 11 | 9 10 | eqtrid | |- ( A = B -> { A } = { A , B } ) |
| 12 | 8 11 11 | f1oeq123d | |- ( A = B -> ( { <. A , A >. } : { A } -1-1-onto-> { A } <-> { <. A , B >. , <. B , A >. } : { A , B } -1-1-onto-> { A , B } ) ) |
| 13 | 12 | adantl | |- ( ( ( A e. V /\ B e. W ) /\ A = B ) -> ( { <. A , A >. } : { A } -1-1-onto-> { A } <-> { <. A , B >. , <. B , A >. } : { A , B } -1-1-onto-> { A , B } ) ) |
| 14 | 3 13 | mpbid | |- ( ( ( A e. V /\ B e. W ) /\ A = B ) -> { <. A , B >. , <. B , A >. } : { A , B } -1-1-onto-> { A , B } ) |
| 15 | simpll | |- ( ( ( A e. V /\ B e. W ) /\ A =/= B ) -> A e. V ) |
|
| 16 | simplr | |- ( ( ( A e. V /\ B e. W ) /\ A =/= B ) -> B e. W ) |
|
| 17 | simpr | |- ( ( ( A e. V /\ B e. W ) /\ A =/= B ) -> A =/= B ) |
|
| 18 | fnprg | |- ( ( ( A e. V /\ B e. W ) /\ ( B e. W /\ A e. V ) /\ A =/= B ) -> { <. A , B >. , <. B , A >. } Fn { A , B } ) |
|
| 19 | 15 16 16 15 17 18 | syl221anc | |- ( ( ( A e. V /\ B e. W ) /\ A =/= B ) -> { <. A , B >. , <. B , A >. } Fn { A , B } ) |
| 20 | cnvsng | |- ( ( A e. V /\ B e. W ) -> `' { <. A , B >. } = { <. B , A >. } ) |
|
| 21 | cnvsng | |- ( ( B e. W /\ A e. V ) -> `' { <. B , A >. } = { <. A , B >. } ) |
|
| 22 | 21 | ancoms | |- ( ( A e. V /\ B e. W ) -> `' { <. B , A >. } = { <. A , B >. } ) |
| 23 | 20 22 | uneq12d | |- ( ( A e. V /\ B e. W ) -> ( `' { <. A , B >. } u. `' { <. B , A >. } ) = ( { <. B , A >. } u. { <. A , B >. } ) ) |
| 24 | uncom | |- ( { <. B , A >. } u. { <. A , B >. } ) = ( { <. A , B >. } u. { <. B , A >. } ) |
|
| 25 | 23 24 | eqtrdi | |- ( ( A e. V /\ B e. W ) -> ( `' { <. A , B >. } u. `' { <. B , A >. } ) = ( { <. A , B >. } u. { <. B , A >. } ) ) |
| 26 | 25 | adantr | |- ( ( ( A e. V /\ B e. W ) /\ A =/= B ) -> ( `' { <. A , B >. } u. `' { <. B , A >. } ) = ( { <. A , B >. } u. { <. B , A >. } ) ) |
| 27 | df-pr | |- { <. A , B >. , <. B , A >. } = ( { <. A , B >. } u. { <. B , A >. } ) |
|
| 28 | 27 | cnveqi | |- `' { <. A , B >. , <. B , A >. } = `' ( { <. A , B >. } u. { <. B , A >. } ) |
| 29 | cnvun | |- `' ( { <. A , B >. } u. { <. B , A >. } ) = ( `' { <. A , B >. } u. `' { <. B , A >. } ) |
|
| 30 | 28 29 | eqtri | |- `' { <. A , B >. , <. B , A >. } = ( `' { <. A , B >. } u. `' { <. B , A >. } ) |
| 31 | 26 30 27 | 3eqtr4g | |- ( ( ( A e. V /\ B e. W ) /\ A =/= B ) -> `' { <. A , B >. , <. B , A >. } = { <. A , B >. , <. B , A >. } ) |
| 32 | 31 | fneq1d | |- ( ( ( A e. V /\ B e. W ) /\ A =/= B ) -> ( `' { <. A , B >. , <. B , A >. } Fn { A , B } <-> { <. A , B >. , <. B , A >. } Fn { A , B } ) ) |
| 33 | 19 32 | mpbird | |- ( ( ( A e. V /\ B e. W ) /\ A =/= B ) -> `' { <. A , B >. , <. B , A >. } Fn { A , B } ) |
| 34 | dff1o4 | |- ( { <. A , B >. , <. B , A >. } : { A , B } -1-1-onto-> { A , B } <-> ( { <. A , B >. , <. B , A >. } Fn { A , B } /\ `' { <. A , B >. , <. B , A >. } Fn { A , B } ) ) |
|
| 35 | 19 33 34 | sylanbrc | |- ( ( ( A e. V /\ B e. W ) /\ A =/= B ) -> { <. A , B >. , <. B , A >. } : { A , B } -1-1-onto-> { A , B } ) |
| 36 | 14 35 | pm2.61dane | |- ( ( A e. V /\ B e. W ) -> { <. A , B >. , <. B , A >. } : { A , B } -1-1-onto-> { A , B } ) |