This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The supremum function distributes over addition in a sense similar to that in supmul1 . (Contributed by Brendan Leahy, 25-Sep-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | supadd.a1 | |- ( ph -> A C_ RR ) |
|
| supadd.a2 | |- ( ph -> A =/= (/) ) |
||
| supadd.a3 | |- ( ph -> E. x e. RR A. y e. A y <_ x ) |
||
| supaddc.b | |- ( ph -> B e. RR ) |
||
| supaddc.c | |- C = { z | E. v e. A z = ( v + B ) } |
||
| Assertion | supaddc | |- ( ph -> ( sup ( A , RR , < ) + B ) = sup ( C , RR , < ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | supadd.a1 | |- ( ph -> A C_ RR ) |
|
| 2 | supadd.a2 | |- ( ph -> A =/= (/) ) |
|
| 3 | supadd.a3 | |- ( ph -> E. x e. RR A. y e. A y <_ x ) |
|
| 4 | supaddc.b | |- ( ph -> B e. RR ) |
|
| 5 | supaddc.c | |- C = { z | E. v e. A z = ( v + B ) } |
|
| 6 | vex | |- w e. _V |
|
| 7 | oveq1 | |- ( v = a -> ( v + B ) = ( a + B ) ) |
|
| 8 | 7 | eqeq2d | |- ( v = a -> ( z = ( v + B ) <-> z = ( a + B ) ) ) |
| 9 | 8 | cbvrexvw | |- ( E. v e. A z = ( v + B ) <-> E. a e. A z = ( a + B ) ) |
| 10 | eqeq1 | |- ( z = w -> ( z = ( a + B ) <-> w = ( a + B ) ) ) |
|
| 11 | 10 | rexbidv | |- ( z = w -> ( E. a e. A z = ( a + B ) <-> E. a e. A w = ( a + B ) ) ) |
| 12 | 9 11 | bitrid | |- ( z = w -> ( E. v e. A z = ( v + B ) <-> E. a e. A w = ( a + B ) ) ) |
| 13 | 6 12 5 | elab2 | |- ( w e. C <-> E. a e. A w = ( a + B ) ) |
| 14 | 1 | sselda | |- ( ( ph /\ a e. A ) -> a e. RR ) |
| 15 | 1 2 3 | suprcld | |- ( ph -> sup ( A , RR , < ) e. RR ) |
| 16 | 15 | adantr | |- ( ( ph /\ a e. A ) -> sup ( A , RR , < ) e. RR ) |
| 17 | 4 | adantr | |- ( ( ph /\ a e. A ) -> B e. RR ) |
| 18 | 1 2 3 | 3jca | |- ( ph -> ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A y <_ x ) ) |
| 19 | suprub | |- ( ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A y <_ x ) /\ a e. A ) -> a <_ sup ( A , RR , < ) ) |
|
| 20 | 18 19 | sylan | |- ( ( ph /\ a e. A ) -> a <_ sup ( A , RR , < ) ) |
| 21 | 14 16 17 20 | leadd1dd | |- ( ( ph /\ a e. A ) -> ( a + B ) <_ ( sup ( A , RR , < ) + B ) ) |
| 22 | breq1 | |- ( w = ( a + B ) -> ( w <_ ( sup ( A , RR , < ) + B ) <-> ( a + B ) <_ ( sup ( A , RR , < ) + B ) ) ) |
|
| 23 | 21 22 | syl5ibrcom | |- ( ( ph /\ a e. A ) -> ( w = ( a + B ) -> w <_ ( sup ( A , RR , < ) + B ) ) ) |
| 24 | 23 | rexlimdva | |- ( ph -> ( E. a e. A w = ( a + B ) -> w <_ ( sup ( A , RR , < ) + B ) ) ) |
| 25 | 13 24 | biimtrid | |- ( ph -> ( w e. C -> w <_ ( sup ( A , RR , < ) + B ) ) ) |
| 26 | 25 | ralrimiv | |- ( ph -> A. w e. C w <_ ( sup ( A , RR , < ) + B ) ) |
| 27 | 14 17 | readdcld | |- ( ( ph /\ a e. A ) -> ( a + B ) e. RR ) |
| 28 | eleq1a | |- ( ( a + B ) e. RR -> ( w = ( a + B ) -> w e. RR ) ) |
|
| 29 | 27 28 | syl | |- ( ( ph /\ a e. A ) -> ( w = ( a + B ) -> w e. RR ) ) |
| 30 | 29 | rexlimdva | |- ( ph -> ( E. a e. A w = ( a + B ) -> w e. RR ) ) |
| 31 | 13 30 | biimtrid | |- ( ph -> ( w e. C -> w e. RR ) ) |
| 32 | 31 | ssrdv | |- ( ph -> C C_ RR ) |
| 33 | ovex | |- ( a + B ) e. _V |
|
| 34 | 33 | isseti | |- E. w w = ( a + B ) |
| 35 | 34 | rgenw | |- A. a e. A E. w w = ( a + B ) |
| 36 | r19.2z | |- ( ( A =/= (/) /\ A. a e. A E. w w = ( a + B ) ) -> E. a e. A E. w w = ( a + B ) ) |
|
| 37 | 2 35 36 | sylancl | |- ( ph -> E. a e. A E. w w = ( a + B ) ) |
| 38 | 13 | exbii | |- ( E. w w e. C <-> E. w E. a e. A w = ( a + B ) ) |
| 39 | n0 | |- ( C =/= (/) <-> E. w w e. C ) |
|
| 40 | rexcom4 | |- ( E. a e. A E. w w = ( a + B ) <-> E. w E. a e. A w = ( a + B ) ) |
|
| 41 | 38 39 40 | 3bitr4i | |- ( C =/= (/) <-> E. a e. A E. w w = ( a + B ) ) |
| 42 | 37 41 | sylibr | |- ( ph -> C =/= (/) ) |
| 43 | 15 4 | readdcld | |- ( ph -> ( sup ( A , RR , < ) + B ) e. RR ) |
| 44 | brralrspcev | |- ( ( ( sup ( A , RR , < ) + B ) e. RR /\ A. w e. C w <_ ( sup ( A , RR , < ) + B ) ) -> E. x e. RR A. w e. C w <_ x ) |
|
| 45 | 43 26 44 | syl2anc | |- ( ph -> E. x e. RR A. w e. C w <_ x ) |
| 46 | suprleub | |- ( ( ( C C_ RR /\ C =/= (/) /\ E. x e. RR A. w e. C w <_ x ) /\ ( sup ( A , RR , < ) + B ) e. RR ) -> ( sup ( C , RR , < ) <_ ( sup ( A , RR , < ) + B ) <-> A. w e. C w <_ ( sup ( A , RR , < ) + B ) ) ) |
|
| 47 | 32 42 45 43 46 | syl31anc | |- ( ph -> ( sup ( C , RR , < ) <_ ( sup ( A , RR , < ) + B ) <-> A. w e. C w <_ ( sup ( A , RR , < ) + B ) ) ) |
| 48 | 26 47 | mpbird | |- ( ph -> sup ( C , RR , < ) <_ ( sup ( A , RR , < ) + B ) ) |
| 49 | 32 42 45 | suprcld | |- ( ph -> sup ( C , RR , < ) e. RR ) |
| 50 | 49 4 15 | ltsubaddd | |- ( ph -> ( ( sup ( C , RR , < ) - B ) < sup ( A , RR , < ) <-> sup ( C , RR , < ) < ( sup ( A , RR , < ) + B ) ) ) |
| 51 | 50 | biimpar | |- ( ( ph /\ sup ( C , RR , < ) < ( sup ( A , RR , < ) + B ) ) -> ( sup ( C , RR , < ) - B ) < sup ( A , RR , < ) ) |
| 52 | 49 4 | resubcld | |- ( ph -> ( sup ( C , RR , < ) - B ) e. RR ) |
| 53 | suprlub | |- ( ( ( A C_ RR /\ A =/= (/) /\ E. x e. RR A. y e. A y <_ x ) /\ ( sup ( C , RR , < ) - B ) e. RR ) -> ( ( sup ( C , RR , < ) - B ) < sup ( A , RR , < ) <-> E. a e. A ( sup ( C , RR , < ) - B ) < a ) ) |
|
| 54 | 1 2 3 52 53 | syl31anc | |- ( ph -> ( ( sup ( C , RR , < ) - B ) < sup ( A , RR , < ) <-> E. a e. A ( sup ( C , RR , < ) - B ) < a ) ) |
| 55 | 54 | adantr | |- ( ( ph /\ sup ( C , RR , < ) < ( sup ( A , RR , < ) + B ) ) -> ( ( sup ( C , RR , < ) - B ) < sup ( A , RR , < ) <-> E. a e. A ( sup ( C , RR , < ) - B ) < a ) ) |
| 56 | 51 55 | mpbid | |- ( ( ph /\ sup ( C , RR , < ) < ( sup ( A , RR , < ) + B ) ) -> E. a e. A ( sup ( C , RR , < ) - B ) < a ) |
| 57 | 27 | adantlr | |- ( ( ( ph /\ sup ( C , RR , < ) < ( sup ( A , RR , < ) + B ) ) /\ a e. A ) -> ( a + B ) e. RR ) |
| 58 | 49 | ad2antrr | |- ( ( ( ph /\ sup ( C , RR , < ) < ( sup ( A , RR , < ) + B ) ) /\ a e. A ) -> sup ( C , RR , < ) e. RR ) |
| 59 | rspe | |- ( ( a e. A /\ w = ( a + B ) ) -> E. a e. A w = ( a + B ) ) |
|
| 60 | 59 13 | sylibr | |- ( ( a e. A /\ w = ( a + B ) ) -> w e. C ) |
| 61 | 60 | adantl | |- ( ( ph /\ ( a e. A /\ w = ( a + B ) ) ) -> w e. C ) |
| 62 | simplrr | |- ( ( ( ph /\ ( a e. A /\ w = ( a + B ) ) ) /\ w e. C ) -> w = ( a + B ) ) |
|
| 63 | 32 42 45 | 3jca | |- ( ph -> ( C C_ RR /\ C =/= (/) /\ E. x e. RR A. w e. C w <_ x ) ) |
| 64 | suprub | |- ( ( ( C C_ RR /\ C =/= (/) /\ E. x e. RR A. w e. C w <_ x ) /\ w e. C ) -> w <_ sup ( C , RR , < ) ) |
|
| 65 | 63 64 | sylan | |- ( ( ph /\ w e. C ) -> w <_ sup ( C , RR , < ) ) |
| 66 | 65 | adantlr | |- ( ( ( ph /\ ( a e. A /\ w = ( a + B ) ) ) /\ w e. C ) -> w <_ sup ( C , RR , < ) ) |
| 67 | 62 66 | eqbrtrrd | |- ( ( ( ph /\ ( a e. A /\ w = ( a + B ) ) ) /\ w e. C ) -> ( a + B ) <_ sup ( C , RR , < ) ) |
| 68 | 61 67 | mpdan | |- ( ( ph /\ ( a e. A /\ w = ( a + B ) ) ) -> ( a + B ) <_ sup ( C , RR , < ) ) |
| 69 | 68 | expr | |- ( ( ph /\ a e. A ) -> ( w = ( a + B ) -> ( a + B ) <_ sup ( C , RR , < ) ) ) |
| 70 | 69 | exlimdv | |- ( ( ph /\ a e. A ) -> ( E. w w = ( a + B ) -> ( a + B ) <_ sup ( C , RR , < ) ) ) |
| 71 | 34 70 | mpi | |- ( ( ph /\ a e. A ) -> ( a + B ) <_ sup ( C , RR , < ) ) |
| 72 | 71 | adantlr | |- ( ( ( ph /\ sup ( C , RR , < ) < ( sup ( A , RR , < ) + B ) ) /\ a e. A ) -> ( a + B ) <_ sup ( C , RR , < ) ) |
| 73 | 57 58 72 | lensymd | |- ( ( ( ph /\ sup ( C , RR , < ) < ( sup ( A , RR , < ) + B ) ) /\ a e. A ) -> -. sup ( C , RR , < ) < ( a + B ) ) |
| 74 | 4 | ad2antrr | |- ( ( ( ph /\ sup ( C , RR , < ) < ( sup ( A , RR , < ) + B ) ) /\ a e. A ) -> B e. RR ) |
| 75 | 14 | adantlr | |- ( ( ( ph /\ sup ( C , RR , < ) < ( sup ( A , RR , < ) + B ) ) /\ a e. A ) -> a e. RR ) |
| 76 | 58 74 75 | ltsubaddd | |- ( ( ( ph /\ sup ( C , RR , < ) < ( sup ( A , RR , < ) + B ) ) /\ a e. A ) -> ( ( sup ( C , RR , < ) - B ) < a <-> sup ( C , RR , < ) < ( a + B ) ) ) |
| 77 | 73 76 | mtbird | |- ( ( ( ph /\ sup ( C , RR , < ) < ( sup ( A , RR , < ) + B ) ) /\ a e. A ) -> -. ( sup ( C , RR , < ) - B ) < a ) |
| 78 | 77 | nrexdv | |- ( ( ph /\ sup ( C , RR , < ) < ( sup ( A , RR , < ) + B ) ) -> -. E. a e. A ( sup ( C , RR , < ) - B ) < a ) |
| 79 | 56 78 | pm2.65da | |- ( ph -> -. sup ( C , RR , < ) < ( sup ( A , RR , < ) + B ) ) |
| 80 | 49 43 | eqleltd | |- ( ph -> ( sup ( C , RR , < ) = ( sup ( A , RR , < ) + B ) <-> ( sup ( C , RR , < ) <_ ( sup ( A , RR , < ) + B ) /\ -. sup ( C , RR , < ) < ( sup ( A , RR , < ) + B ) ) ) ) |
| 81 | 48 79 80 | mpbir2and | |- ( ph -> sup ( C , RR , < ) = ( sup ( A , RR , < ) + B ) ) |
| 82 | 81 | eqcomd | |- ( ph -> ( sup ( A , RR , < ) + B ) = sup ( C , RR , < ) ) |