This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Nonempty class abstraction. See also ab0 . (Contributed by NM, 26-Dec-1996) (Proof shortened by Mario Carneiro, 11-Nov-2016) Avoid df-clel , ax-8 . (Revised by GG, 30-Aug-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | abn0 | |- ( { x | ph } =/= (/) <-> E. x ph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ab0 | |- ( { x | ph } = (/) <-> A. x -. ph ) |
|
| 2 | 1 | notbii | |- ( -. { x | ph } = (/) <-> -. A. x -. ph ) |
| 3 | df-ne | |- ( { x | ph } =/= (/) <-> -. { x | ph } = (/) ) |
|
| 4 | df-ex | |- ( E. x ph <-> -. A. x -. ph ) |
|
| 5 | 2 3 4 | 3bitr4i | |- ( { x | ph } =/= (/) <-> E. x ph ) |