This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subring always has the same inversion function, for elements that are invertible. (Contributed by Mario Carneiro, 4-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | subrginv.1 | |- S = ( R |`s A ) |
|
| subrginv.2 | |- I = ( invr ` R ) |
||
| subrginv.3 | |- U = ( Unit ` S ) |
||
| subrginv.4 | |- J = ( invr ` S ) |
||
| Assertion | subrginv | |- ( ( A e. ( SubRing ` R ) /\ X e. U ) -> ( I ` X ) = ( J ` X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subrginv.1 | |- S = ( R |`s A ) |
|
| 2 | subrginv.2 | |- I = ( invr ` R ) |
|
| 3 | subrginv.3 | |- U = ( Unit ` S ) |
|
| 4 | subrginv.4 | |- J = ( invr ` S ) |
|
| 5 | subrgrcl | |- ( A e. ( SubRing ` R ) -> R e. Ring ) |
|
| 6 | 5 | adantr | |- ( ( A e. ( SubRing ` R ) /\ X e. U ) -> R e. Ring ) |
| 7 | 1 | subrgbas | |- ( A e. ( SubRing ` R ) -> A = ( Base ` S ) ) |
| 8 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 9 | 8 | subrgss | |- ( A e. ( SubRing ` R ) -> A C_ ( Base ` R ) ) |
| 10 | 7 9 | eqsstrrd | |- ( A e. ( SubRing ` R ) -> ( Base ` S ) C_ ( Base ` R ) ) |
| 11 | 10 | adantr | |- ( ( A e. ( SubRing ` R ) /\ X e. U ) -> ( Base ` S ) C_ ( Base ` R ) ) |
| 12 | 1 | subrgring | |- ( A e. ( SubRing ` R ) -> S e. Ring ) |
| 13 | eqid | |- ( Base ` S ) = ( Base ` S ) |
|
| 14 | 3 4 13 | ringinvcl | |- ( ( S e. Ring /\ X e. U ) -> ( J ` X ) e. ( Base ` S ) ) |
| 15 | 12 14 | sylan | |- ( ( A e. ( SubRing ` R ) /\ X e. U ) -> ( J ` X ) e. ( Base ` S ) ) |
| 16 | 11 15 | sseldd | |- ( ( A e. ( SubRing ` R ) /\ X e. U ) -> ( J ` X ) e. ( Base ` R ) ) |
| 17 | 13 3 | unitcl | |- ( X e. U -> X e. ( Base ` S ) ) |
| 18 | 17 | adantl | |- ( ( A e. ( SubRing ` R ) /\ X e. U ) -> X e. ( Base ` S ) ) |
| 19 | 11 18 | sseldd | |- ( ( A e. ( SubRing ` R ) /\ X e. U ) -> X e. ( Base ` R ) ) |
| 20 | eqid | |- ( Unit ` R ) = ( Unit ` R ) |
|
| 21 | 1 20 3 | subrguss | |- ( A e. ( SubRing ` R ) -> U C_ ( Unit ` R ) ) |
| 22 | 21 | sselda | |- ( ( A e. ( SubRing ` R ) /\ X e. U ) -> X e. ( Unit ` R ) ) |
| 23 | 20 2 8 | ringinvcl | |- ( ( R e. Ring /\ X e. ( Unit ` R ) ) -> ( I ` X ) e. ( Base ` R ) ) |
| 24 | 5 22 23 | syl2an2r | |- ( ( A e. ( SubRing ` R ) /\ X e. U ) -> ( I ` X ) e. ( Base ` R ) ) |
| 25 | eqid | |- ( .r ` R ) = ( .r ` R ) |
|
| 26 | 8 25 | ringass | |- ( ( R e. Ring /\ ( ( J ` X ) e. ( Base ` R ) /\ X e. ( Base ` R ) /\ ( I ` X ) e. ( Base ` R ) ) ) -> ( ( ( J ` X ) ( .r ` R ) X ) ( .r ` R ) ( I ` X ) ) = ( ( J ` X ) ( .r ` R ) ( X ( .r ` R ) ( I ` X ) ) ) ) |
| 27 | 6 16 19 24 26 | syl13anc | |- ( ( A e. ( SubRing ` R ) /\ X e. U ) -> ( ( ( J ` X ) ( .r ` R ) X ) ( .r ` R ) ( I ` X ) ) = ( ( J ` X ) ( .r ` R ) ( X ( .r ` R ) ( I ` X ) ) ) ) |
| 28 | eqid | |- ( .r ` S ) = ( .r ` S ) |
|
| 29 | eqid | |- ( 1r ` S ) = ( 1r ` S ) |
|
| 30 | 3 4 28 29 | unitlinv | |- ( ( S e. Ring /\ X e. U ) -> ( ( J ` X ) ( .r ` S ) X ) = ( 1r ` S ) ) |
| 31 | 12 30 | sylan | |- ( ( A e. ( SubRing ` R ) /\ X e. U ) -> ( ( J ` X ) ( .r ` S ) X ) = ( 1r ` S ) ) |
| 32 | 1 25 | ressmulr | |- ( A e. ( SubRing ` R ) -> ( .r ` R ) = ( .r ` S ) ) |
| 33 | 32 | adantr | |- ( ( A e. ( SubRing ` R ) /\ X e. U ) -> ( .r ` R ) = ( .r ` S ) ) |
| 34 | 33 | oveqd | |- ( ( A e. ( SubRing ` R ) /\ X e. U ) -> ( ( J ` X ) ( .r ` R ) X ) = ( ( J ` X ) ( .r ` S ) X ) ) |
| 35 | eqid | |- ( 1r ` R ) = ( 1r ` R ) |
|
| 36 | 1 35 | subrg1 | |- ( A e. ( SubRing ` R ) -> ( 1r ` R ) = ( 1r ` S ) ) |
| 37 | 36 | adantr | |- ( ( A e. ( SubRing ` R ) /\ X e. U ) -> ( 1r ` R ) = ( 1r ` S ) ) |
| 38 | 31 34 37 | 3eqtr4d | |- ( ( A e. ( SubRing ` R ) /\ X e. U ) -> ( ( J ` X ) ( .r ` R ) X ) = ( 1r ` R ) ) |
| 39 | 38 | oveq1d | |- ( ( A e. ( SubRing ` R ) /\ X e. U ) -> ( ( ( J ` X ) ( .r ` R ) X ) ( .r ` R ) ( I ` X ) ) = ( ( 1r ` R ) ( .r ` R ) ( I ` X ) ) ) |
| 40 | 20 2 25 35 | unitrinv | |- ( ( R e. Ring /\ X e. ( Unit ` R ) ) -> ( X ( .r ` R ) ( I ` X ) ) = ( 1r ` R ) ) |
| 41 | 5 22 40 | syl2an2r | |- ( ( A e. ( SubRing ` R ) /\ X e. U ) -> ( X ( .r ` R ) ( I ` X ) ) = ( 1r ` R ) ) |
| 42 | 41 | oveq2d | |- ( ( A e. ( SubRing ` R ) /\ X e. U ) -> ( ( J ` X ) ( .r ` R ) ( X ( .r ` R ) ( I ` X ) ) ) = ( ( J ` X ) ( .r ` R ) ( 1r ` R ) ) ) |
| 43 | 27 39 42 | 3eqtr3d | |- ( ( A e. ( SubRing ` R ) /\ X e. U ) -> ( ( 1r ` R ) ( .r ` R ) ( I ` X ) ) = ( ( J ` X ) ( .r ` R ) ( 1r ` R ) ) ) |
| 44 | 8 25 35 | ringlidm | |- ( ( R e. Ring /\ ( I ` X ) e. ( Base ` R ) ) -> ( ( 1r ` R ) ( .r ` R ) ( I ` X ) ) = ( I ` X ) ) |
| 45 | 5 24 44 | syl2an2r | |- ( ( A e. ( SubRing ` R ) /\ X e. U ) -> ( ( 1r ` R ) ( .r ` R ) ( I ` X ) ) = ( I ` X ) ) |
| 46 | 8 25 35 | ringridm | |- ( ( R e. Ring /\ ( J ` X ) e. ( Base ` R ) ) -> ( ( J ` X ) ( .r ` R ) ( 1r ` R ) ) = ( J ` X ) ) |
| 47 | 5 16 46 | syl2an2r | |- ( ( A e. ( SubRing ` R ) /\ X e. U ) -> ( ( J ` X ) ( .r ` R ) ( 1r ` R ) ) = ( J ` X ) ) |
| 48 | 43 45 47 | 3eqtr3d | |- ( ( A e. ( SubRing ` R ) /\ X e. U ) -> ( I ` X ) = ( J ` X ) ) |