This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A unit times its inverse is the ring unity. (Contributed by Mario Carneiro, 2-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | unitinvcl.1 | |- U = ( Unit ` R ) |
|
| unitinvcl.2 | |- I = ( invr ` R ) |
||
| unitinvcl.3 | |- .x. = ( .r ` R ) |
||
| unitinvcl.4 | |- .1. = ( 1r ` R ) |
||
| Assertion | unitrinv | |- ( ( R e. Ring /\ X e. U ) -> ( X .x. ( I ` X ) ) = .1. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unitinvcl.1 | |- U = ( Unit ` R ) |
|
| 2 | unitinvcl.2 | |- I = ( invr ` R ) |
|
| 3 | unitinvcl.3 | |- .x. = ( .r ` R ) |
|
| 4 | unitinvcl.4 | |- .1. = ( 1r ` R ) |
|
| 5 | eqid | |- ( ( mulGrp ` R ) |`s U ) = ( ( mulGrp ` R ) |`s U ) |
|
| 6 | 1 5 | unitgrp | |- ( R e. Ring -> ( ( mulGrp ` R ) |`s U ) e. Grp ) |
| 7 | 1 5 | unitgrpbas | |- U = ( Base ` ( ( mulGrp ` R ) |`s U ) ) |
| 8 | 1 | fvexi | |- U e. _V |
| 9 | eqid | |- ( mulGrp ` R ) = ( mulGrp ` R ) |
|
| 10 | 9 3 | mgpplusg | |- .x. = ( +g ` ( mulGrp ` R ) ) |
| 11 | 5 10 | ressplusg | |- ( U e. _V -> .x. = ( +g ` ( ( mulGrp ` R ) |`s U ) ) ) |
| 12 | 8 11 | ax-mp | |- .x. = ( +g ` ( ( mulGrp ` R ) |`s U ) ) |
| 13 | eqid | |- ( 0g ` ( ( mulGrp ` R ) |`s U ) ) = ( 0g ` ( ( mulGrp ` R ) |`s U ) ) |
|
| 14 | 1 5 2 | invrfval | |- I = ( invg ` ( ( mulGrp ` R ) |`s U ) ) |
| 15 | 7 12 13 14 | grprinv | |- ( ( ( ( mulGrp ` R ) |`s U ) e. Grp /\ X e. U ) -> ( X .x. ( I ` X ) ) = ( 0g ` ( ( mulGrp ` R ) |`s U ) ) ) |
| 16 | 6 15 | sylan | |- ( ( R e. Ring /\ X e. U ) -> ( X .x. ( I ` X ) ) = ( 0g ` ( ( mulGrp ` R ) |`s U ) ) ) |
| 17 | 1 5 4 | unitgrpid | |- ( R e. Ring -> .1. = ( 0g ` ( ( mulGrp ` R ) |`s U ) ) ) |
| 18 | 17 | adantr | |- ( ( R e. Ring /\ X e. U ) -> .1. = ( 0g ` ( ( mulGrp ` R ) |`s U ) ) ) |
| 19 | 16 18 | eqtr4d | |- ( ( R e. Ring /\ X e. U ) -> ( X .x. ( I ` X ) ) = .1. ) |