This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If an element divides another in a subring, then it also divides the other in the parent ring. (Contributed by Mario Carneiro, 4-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | subrgdvds.1 | |- S = ( R |`s A ) |
|
| subrgdvds.2 | |- .|| = ( ||r ` R ) |
||
| subrgdvds.3 | |- E = ( ||r ` S ) |
||
| Assertion | subrgdvds | |- ( A e. ( SubRing ` R ) -> E C_ .|| ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subrgdvds.1 | |- S = ( R |`s A ) |
|
| 2 | subrgdvds.2 | |- .|| = ( ||r ` R ) |
|
| 3 | subrgdvds.3 | |- E = ( ||r ` S ) |
|
| 4 | 3 | reldvdsr | |- Rel E |
| 5 | 4 | a1i | |- ( A e. ( SubRing ` R ) -> Rel E ) |
| 6 | 1 | subrgbas | |- ( A e. ( SubRing ` R ) -> A = ( Base ` S ) ) |
| 7 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 8 | 7 | subrgss | |- ( A e. ( SubRing ` R ) -> A C_ ( Base ` R ) ) |
| 9 | 6 8 | eqsstrrd | |- ( A e. ( SubRing ` R ) -> ( Base ` S ) C_ ( Base ` R ) ) |
| 10 | 9 | sseld | |- ( A e. ( SubRing ` R ) -> ( x e. ( Base ` S ) -> x e. ( Base ` R ) ) ) |
| 11 | eqid | |- ( .r ` R ) = ( .r ` R ) |
|
| 12 | 1 11 | ressmulr | |- ( A e. ( SubRing ` R ) -> ( .r ` R ) = ( .r ` S ) ) |
| 13 | 12 | oveqd | |- ( A e. ( SubRing ` R ) -> ( z ( .r ` R ) x ) = ( z ( .r ` S ) x ) ) |
| 14 | 13 | eqeq1d | |- ( A e. ( SubRing ` R ) -> ( ( z ( .r ` R ) x ) = y <-> ( z ( .r ` S ) x ) = y ) ) |
| 15 | 14 | rexbidv | |- ( A e. ( SubRing ` R ) -> ( E. z e. ( Base ` S ) ( z ( .r ` R ) x ) = y <-> E. z e. ( Base ` S ) ( z ( .r ` S ) x ) = y ) ) |
| 16 | ssrexv | |- ( ( Base ` S ) C_ ( Base ` R ) -> ( E. z e. ( Base ` S ) ( z ( .r ` R ) x ) = y -> E. z e. ( Base ` R ) ( z ( .r ` R ) x ) = y ) ) |
|
| 17 | 9 16 | syl | |- ( A e. ( SubRing ` R ) -> ( E. z e. ( Base ` S ) ( z ( .r ` R ) x ) = y -> E. z e. ( Base ` R ) ( z ( .r ` R ) x ) = y ) ) |
| 18 | 15 17 | sylbird | |- ( A e. ( SubRing ` R ) -> ( E. z e. ( Base ` S ) ( z ( .r ` S ) x ) = y -> E. z e. ( Base ` R ) ( z ( .r ` R ) x ) = y ) ) |
| 19 | 10 18 | anim12d | |- ( A e. ( SubRing ` R ) -> ( ( x e. ( Base ` S ) /\ E. z e. ( Base ` S ) ( z ( .r ` S ) x ) = y ) -> ( x e. ( Base ` R ) /\ E. z e. ( Base ` R ) ( z ( .r ` R ) x ) = y ) ) ) |
| 20 | eqid | |- ( Base ` S ) = ( Base ` S ) |
|
| 21 | eqid | |- ( .r ` S ) = ( .r ` S ) |
|
| 22 | 20 3 21 | dvdsr | |- ( x E y <-> ( x e. ( Base ` S ) /\ E. z e. ( Base ` S ) ( z ( .r ` S ) x ) = y ) ) |
| 23 | 7 2 11 | dvdsr | |- ( x .|| y <-> ( x e. ( Base ` R ) /\ E. z e. ( Base ` R ) ( z ( .r ` R ) x ) = y ) ) |
| 24 | 19 22 23 | 3imtr4g | |- ( A e. ( SubRing ` R ) -> ( x E y -> x .|| y ) ) |
| 25 | df-br | |- ( x E y <-> <. x , y >. e. E ) |
|
| 26 | df-br | |- ( x .|| y <-> <. x , y >. e. .|| ) |
|
| 27 | 24 25 26 | 3imtr3g | |- ( A e. ( SubRing ` R ) -> ( <. x , y >. e. E -> <. x , y >. e. .|| ) ) |
| 28 | 5 27 | relssdv | |- ( A e. ( SubRing ` R ) -> E C_ .|| ) |