This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subring always has the same multiplicative identity. (Contributed by Stefan O'Rear, 27-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | subrg1.1 | |- S = ( R |`s A ) |
|
| subrg1.2 | |- .1. = ( 1r ` R ) |
||
| Assertion | subrg1 | |- ( A e. ( SubRing ` R ) -> .1. = ( 1r ` S ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subrg1.1 | |- S = ( R |`s A ) |
|
| 2 | subrg1.2 | |- .1. = ( 1r ` R ) |
|
| 3 | eqid | |- ( 1r ` R ) = ( 1r ` R ) |
|
| 4 | 3 | subrg1cl | |- ( A e. ( SubRing ` R ) -> ( 1r ` R ) e. A ) |
| 5 | 1 | subrgbas | |- ( A e. ( SubRing ` R ) -> A = ( Base ` S ) ) |
| 6 | 4 5 | eleqtrd | |- ( A e. ( SubRing ` R ) -> ( 1r ` R ) e. ( Base ` S ) ) |
| 7 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 8 | 7 | subrgss | |- ( A e. ( SubRing ` R ) -> A C_ ( Base ` R ) ) |
| 9 | 5 8 | eqsstrrd | |- ( A e. ( SubRing ` R ) -> ( Base ` S ) C_ ( Base ` R ) ) |
| 10 | 9 | sselda | |- ( ( A e. ( SubRing ` R ) /\ x e. ( Base ` S ) ) -> x e. ( Base ` R ) ) |
| 11 | subrgrcl | |- ( A e. ( SubRing ` R ) -> R e. Ring ) |
|
| 12 | eqid | |- ( .r ` R ) = ( .r ` R ) |
|
| 13 | 7 12 3 | ringidmlem | |- ( ( R e. Ring /\ x e. ( Base ` R ) ) -> ( ( ( 1r ` R ) ( .r ` R ) x ) = x /\ ( x ( .r ` R ) ( 1r ` R ) ) = x ) ) |
| 14 | 11 13 | sylan | |- ( ( A e. ( SubRing ` R ) /\ x e. ( Base ` R ) ) -> ( ( ( 1r ` R ) ( .r ` R ) x ) = x /\ ( x ( .r ` R ) ( 1r ` R ) ) = x ) ) |
| 15 | 1 12 | ressmulr | |- ( A e. ( SubRing ` R ) -> ( .r ` R ) = ( .r ` S ) ) |
| 16 | 15 | oveqd | |- ( A e. ( SubRing ` R ) -> ( ( 1r ` R ) ( .r ` R ) x ) = ( ( 1r ` R ) ( .r ` S ) x ) ) |
| 17 | 16 | eqeq1d | |- ( A e. ( SubRing ` R ) -> ( ( ( 1r ` R ) ( .r ` R ) x ) = x <-> ( ( 1r ` R ) ( .r ` S ) x ) = x ) ) |
| 18 | 15 | oveqd | |- ( A e. ( SubRing ` R ) -> ( x ( .r ` R ) ( 1r ` R ) ) = ( x ( .r ` S ) ( 1r ` R ) ) ) |
| 19 | 18 | eqeq1d | |- ( A e. ( SubRing ` R ) -> ( ( x ( .r ` R ) ( 1r ` R ) ) = x <-> ( x ( .r ` S ) ( 1r ` R ) ) = x ) ) |
| 20 | 17 19 | anbi12d | |- ( A e. ( SubRing ` R ) -> ( ( ( ( 1r ` R ) ( .r ` R ) x ) = x /\ ( x ( .r ` R ) ( 1r ` R ) ) = x ) <-> ( ( ( 1r ` R ) ( .r ` S ) x ) = x /\ ( x ( .r ` S ) ( 1r ` R ) ) = x ) ) ) |
| 21 | 20 | biimpa | |- ( ( A e. ( SubRing ` R ) /\ ( ( ( 1r ` R ) ( .r ` R ) x ) = x /\ ( x ( .r ` R ) ( 1r ` R ) ) = x ) ) -> ( ( ( 1r ` R ) ( .r ` S ) x ) = x /\ ( x ( .r ` S ) ( 1r ` R ) ) = x ) ) |
| 22 | 14 21 | syldan | |- ( ( A e. ( SubRing ` R ) /\ x e. ( Base ` R ) ) -> ( ( ( 1r ` R ) ( .r ` S ) x ) = x /\ ( x ( .r ` S ) ( 1r ` R ) ) = x ) ) |
| 23 | 10 22 | syldan | |- ( ( A e. ( SubRing ` R ) /\ x e. ( Base ` S ) ) -> ( ( ( 1r ` R ) ( .r ` S ) x ) = x /\ ( x ( .r ` S ) ( 1r ` R ) ) = x ) ) |
| 24 | 23 | ralrimiva | |- ( A e. ( SubRing ` R ) -> A. x e. ( Base ` S ) ( ( ( 1r ` R ) ( .r ` S ) x ) = x /\ ( x ( .r ` S ) ( 1r ` R ) ) = x ) ) |
| 25 | 1 | subrgring | |- ( A e. ( SubRing ` R ) -> S e. Ring ) |
| 26 | eqid | |- ( Base ` S ) = ( Base ` S ) |
|
| 27 | eqid | |- ( .r ` S ) = ( .r ` S ) |
|
| 28 | eqid | |- ( 1r ` S ) = ( 1r ` S ) |
|
| 29 | 26 27 28 | isringid | |- ( S e. Ring -> ( ( ( 1r ` R ) e. ( Base ` S ) /\ A. x e. ( Base ` S ) ( ( ( 1r ` R ) ( .r ` S ) x ) = x /\ ( x ( .r ` S ) ( 1r ` R ) ) = x ) ) <-> ( 1r ` S ) = ( 1r ` R ) ) ) |
| 30 | 25 29 | syl | |- ( A e. ( SubRing ` R ) -> ( ( ( 1r ` R ) e. ( Base ` S ) /\ A. x e. ( Base ` S ) ( ( ( 1r ` R ) ( .r ` S ) x ) = x /\ ( x ( .r ` S ) ( 1r ` R ) ) = x ) ) <-> ( 1r ` S ) = ( 1r ` R ) ) ) |
| 31 | 6 24 30 | mpbi2and | |- ( A e. ( SubRing ` R ) -> ( 1r ` S ) = ( 1r ` R ) ) |
| 32 | 2 31 | eqtr4id | |- ( A e. ( SubRing ` R ) -> .1. = ( 1r ` S ) ) |