This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The identity element of the ring of power series. (Contributed by Mario Carneiro, 8-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | psrring.s | |- S = ( I mPwSer R ) |
|
| psrring.i | |- ( ph -> I e. V ) |
||
| psrring.r | |- ( ph -> R e. Ring ) |
||
| psr1.d | |- D = { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |
||
| psr1.z | |- .0. = ( 0g ` R ) |
||
| psr1.o | |- .1. = ( 1r ` R ) |
||
| psr1.u | |- U = ( 1r ` S ) |
||
| Assertion | psr1 | |- ( ph -> U = ( x e. D |-> if ( x = ( I X. { 0 } ) , .1. , .0. ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psrring.s | |- S = ( I mPwSer R ) |
|
| 2 | psrring.i | |- ( ph -> I e. V ) |
|
| 3 | psrring.r | |- ( ph -> R e. Ring ) |
|
| 4 | psr1.d | |- D = { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |
|
| 5 | psr1.z | |- .0. = ( 0g ` R ) |
|
| 6 | psr1.o | |- .1. = ( 1r ` R ) |
|
| 7 | psr1.u | |- U = ( 1r ` S ) |
|
| 8 | eqid | |- ( x e. D |-> if ( x = ( I X. { 0 } ) , .1. , .0. ) ) = ( x e. D |-> if ( x = ( I X. { 0 } ) , .1. , .0. ) ) |
|
| 9 | eqid | |- ( Base ` S ) = ( Base ` S ) |
|
| 10 | 1 2 3 4 5 6 8 9 | psr1cl | |- ( ph -> ( x e. D |-> if ( x = ( I X. { 0 } ) , .1. , .0. ) ) e. ( Base ` S ) ) |
| 11 | 2 | adantr | |- ( ( ph /\ y e. ( Base ` S ) ) -> I e. V ) |
| 12 | 3 | adantr | |- ( ( ph /\ y e. ( Base ` S ) ) -> R e. Ring ) |
| 13 | eqid | |- ( .r ` S ) = ( .r ` S ) |
|
| 14 | simpr | |- ( ( ph /\ y e. ( Base ` S ) ) -> y e. ( Base ` S ) ) |
|
| 15 | 1 11 12 4 5 6 8 9 13 14 | psrlidm | |- ( ( ph /\ y e. ( Base ` S ) ) -> ( ( x e. D |-> if ( x = ( I X. { 0 } ) , .1. , .0. ) ) ( .r ` S ) y ) = y ) |
| 16 | 1 11 12 4 5 6 8 9 13 14 | psrridm | |- ( ( ph /\ y e. ( Base ` S ) ) -> ( y ( .r ` S ) ( x e. D |-> if ( x = ( I X. { 0 } ) , .1. , .0. ) ) ) = y ) |
| 17 | 15 16 | jca | |- ( ( ph /\ y e. ( Base ` S ) ) -> ( ( ( x e. D |-> if ( x = ( I X. { 0 } ) , .1. , .0. ) ) ( .r ` S ) y ) = y /\ ( y ( .r ` S ) ( x e. D |-> if ( x = ( I X. { 0 } ) , .1. , .0. ) ) ) = y ) ) |
| 18 | 17 | ralrimiva | |- ( ph -> A. y e. ( Base ` S ) ( ( ( x e. D |-> if ( x = ( I X. { 0 } ) , .1. , .0. ) ) ( .r ` S ) y ) = y /\ ( y ( .r ` S ) ( x e. D |-> if ( x = ( I X. { 0 } ) , .1. , .0. ) ) ) = y ) ) |
| 19 | 1 2 3 | psrring | |- ( ph -> S e. Ring ) |
| 20 | 9 13 7 | isringid | |- ( S e. Ring -> ( ( ( x e. D |-> if ( x = ( I X. { 0 } ) , .1. , .0. ) ) e. ( Base ` S ) /\ A. y e. ( Base ` S ) ( ( ( x e. D |-> if ( x = ( I X. { 0 } ) , .1. , .0. ) ) ( .r ` S ) y ) = y /\ ( y ( .r ` S ) ( x e. D |-> if ( x = ( I X. { 0 } ) , .1. , .0. ) ) ) = y ) ) <-> U = ( x e. D |-> if ( x = ( I X. { 0 } ) , .1. , .0. ) ) ) ) |
| 21 | 19 20 | syl | |- ( ph -> ( ( ( x e. D |-> if ( x = ( I X. { 0 } ) , .1. , .0. ) ) e. ( Base ` S ) /\ A. y e. ( Base ` S ) ( ( ( x e. D |-> if ( x = ( I X. { 0 } ) , .1. , .0. ) ) ( .r ` S ) y ) = y /\ ( y ( .r ` S ) ( x e. D |-> if ( x = ( I X. { 0 } ) , .1. , .0. ) ) ) = y ) ) <-> U = ( x e. D |-> if ( x = ( I X. { 0 } ) , .1. , .0. ) ) ) ) |
| 22 | 10 18 21 | mpbi2and | |- ( ph -> U = ( x e. D |-> if ( x = ( I X. { 0 } ) , .1. , .0. ) ) ) |