This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A restricted power series algebra has the same addition operation. (Contributed by Mario Carneiro, 3-Jul-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | resspsr.s | |- S = ( I mPwSer R ) |
|
| resspsr.h | |- H = ( R |`s T ) |
||
| resspsr.u | |- U = ( I mPwSer H ) |
||
| resspsr.b | |- B = ( Base ` U ) |
||
| resspsr.p | |- P = ( S |`s B ) |
||
| resspsr.2 | |- ( ph -> T e. ( SubRing ` R ) ) |
||
| Assertion | resspsradd | |- ( ( ph /\ ( X e. B /\ Y e. B ) ) -> ( X ( +g ` U ) Y ) = ( X ( +g ` P ) Y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resspsr.s | |- S = ( I mPwSer R ) |
|
| 2 | resspsr.h | |- H = ( R |`s T ) |
|
| 3 | resspsr.u | |- U = ( I mPwSer H ) |
|
| 4 | resspsr.b | |- B = ( Base ` U ) |
|
| 5 | resspsr.p | |- P = ( S |`s B ) |
|
| 6 | resspsr.2 | |- ( ph -> T e. ( SubRing ` R ) ) |
|
| 7 | eqid | |- ( +g ` H ) = ( +g ` H ) |
|
| 8 | eqid | |- ( +g ` U ) = ( +g ` U ) |
|
| 9 | simprl | |- ( ( ph /\ ( X e. B /\ Y e. B ) ) -> X e. B ) |
|
| 10 | simprr | |- ( ( ph /\ ( X e. B /\ Y e. B ) ) -> Y e. B ) |
|
| 11 | 3 4 7 8 9 10 | psradd | |- ( ( ph /\ ( X e. B /\ Y e. B ) ) -> ( X ( +g ` U ) Y ) = ( X oF ( +g ` H ) Y ) ) |
| 12 | eqid | |- ( Base ` S ) = ( Base ` S ) |
|
| 13 | eqid | |- ( +g ` R ) = ( +g ` R ) |
|
| 14 | eqid | |- ( +g ` S ) = ( +g ` S ) |
|
| 15 | fvex | |- ( Base ` R ) e. _V |
|
| 16 | 2 | subrgbas | |- ( T e. ( SubRing ` R ) -> T = ( Base ` H ) ) |
| 17 | 6 16 | syl | |- ( ph -> T = ( Base ` H ) ) |
| 18 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 19 | 18 | subrgss | |- ( T e. ( SubRing ` R ) -> T C_ ( Base ` R ) ) |
| 20 | 6 19 | syl | |- ( ph -> T C_ ( Base ` R ) ) |
| 21 | 17 20 | eqsstrrd | |- ( ph -> ( Base ` H ) C_ ( Base ` R ) ) |
| 22 | mapss | |- ( ( ( Base ` R ) e. _V /\ ( Base ` H ) C_ ( Base ` R ) ) -> ( ( Base ` H ) ^m { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } ) C_ ( ( Base ` R ) ^m { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } ) ) |
|
| 23 | 15 21 22 | sylancr | |- ( ph -> ( ( Base ` H ) ^m { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } ) C_ ( ( Base ` R ) ^m { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } ) ) |
| 24 | 23 | adantr | |- ( ( ph /\ ( X e. B /\ Y e. B ) ) -> ( ( Base ` H ) ^m { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } ) C_ ( ( Base ` R ) ^m { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } ) ) |
| 25 | eqid | |- ( Base ` H ) = ( Base ` H ) |
|
| 26 | eqid | |- { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } = { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |
|
| 27 | reldmpsr | |- Rel dom mPwSer |
|
| 28 | 27 3 4 | elbasov | |- ( X e. B -> ( I e. _V /\ H e. _V ) ) |
| 29 | 28 | ad2antrl | |- ( ( ph /\ ( X e. B /\ Y e. B ) ) -> ( I e. _V /\ H e. _V ) ) |
| 30 | 29 | simpld | |- ( ( ph /\ ( X e. B /\ Y e. B ) ) -> I e. _V ) |
| 31 | 3 25 26 4 30 | psrbas | |- ( ( ph /\ ( X e. B /\ Y e. B ) ) -> B = ( ( Base ` H ) ^m { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } ) ) |
| 32 | 1 18 26 12 30 | psrbas | |- ( ( ph /\ ( X e. B /\ Y e. B ) ) -> ( Base ` S ) = ( ( Base ` R ) ^m { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } ) ) |
| 33 | 24 31 32 | 3sstr4d | |- ( ( ph /\ ( X e. B /\ Y e. B ) ) -> B C_ ( Base ` S ) ) |
| 34 | 33 9 | sseldd | |- ( ( ph /\ ( X e. B /\ Y e. B ) ) -> X e. ( Base ` S ) ) |
| 35 | 33 10 | sseldd | |- ( ( ph /\ ( X e. B /\ Y e. B ) ) -> Y e. ( Base ` S ) ) |
| 36 | 1 12 13 14 34 35 | psradd | |- ( ( ph /\ ( X e. B /\ Y e. B ) ) -> ( X ( +g ` S ) Y ) = ( X oF ( +g ` R ) Y ) ) |
| 37 | 2 13 | ressplusg | |- ( T e. ( SubRing ` R ) -> ( +g ` R ) = ( +g ` H ) ) |
| 38 | 6 37 | syl | |- ( ph -> ( +g ` R ) = ( +g ` H ) ) |
| 39 | 38 | adantr | |- ( ( ph /\ ( X e. B /\ Y e. B ) ) -> ( +g ` R ) = ( +g ` H ) ) |
| 40 | 39 | ofeqd | |- ( ( ph /\ ( X e. B /\ Y e. B ) ) -> oF ( +g ` R ) = oF ( +g ` H ) ) |
| 41 | 40 | oveqd | |- ( ( ph /\ ( X e. B /\ Y e. B ) ) -> ( X oF ( +g ` R ) Y ) = ( X oF ( +g ` H ) Y ) ) |
| 42 | 36 41 | eqtrd | |- ( ( ph /\ ( X e. B /\ Y e. B ) ) -> ( X ( +g ` S ) Y ) = ( X oF ( +g ` H ) Y ) ) |
| 43 | 4 | fvexi | |- B e. _V |
| 44 | 5 14 | ressplusg | |- ( B e. _V -> ( +g ` S ) = ( +g ` P ) ) |
| 45 | 43 44 | mp1i | |- ( ( ph /\ ( X e. B /\ Y e. B ) ) -> ( +g ` S ) = ( +g ` P ) ) |
| 46 | 45 | oveqd | |- ( ( ph /\ ( X e. B /\ Y e. B ) ) -> ( X ( +g ` S ) Y ) = ( X ( +g ` P ) Y ) ) |
| 47 | 11 42 46 | 3eqtr2d | |- ( ( ph /\ ( X e. B /\ Y e. B ) ) -> ( X ( +g ` U ) Y ) = ( X ( +g ` P ) Y ) ) |