This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A restricted power series algebra has the same base set. (Contributed by Mario Carneiro, 3-Jul-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | resspsr.s | |- S = ( I mPwSer R ) |
|
| resspsr.h | |- H = ( R |`s T ) |
||
| resspsr.u | |- U = ( I mPwSer H ) |
||
| resspsr.b | |- B = ( Base ` U ) |
||
| resspsr.p | |- P = ( S |`s B ) |
||
| resspsr.2 | |- ( ph -> T e. ( SubRing ` R ) ) |
||
| Assertion | resspsrbas | |- ( ph -> B = ( Base ` P ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resspsr.s | |- S = ( I mPwSer R ) |
|
| 2 | resspsr.h | |- H = ( R |`s T ) |
|
| 3 | resspsr.u | |- U = ( I mPwSer H ) |
|
| 4 | resspsr.b | |- B = ( Base ` U ) |
|
| 5 | resspsr.p | |- P = ( S |`s B ) |
|
| 6 | resspsr.2 | |- ( ph -> T e. ( SubRing ` R ) ) |
|
| 7 | fvex | |- ( Base ` R ) e. _V |
|
| 8 | 2 | subrgbas | |- ( T e. ( SubRing ` R ) -> T = ( Base ` H ) ) |
| 9 | 6 8 | syl | |- ( ph -> T = ( Base ` H ) ) |
| 10 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 11 | 10 | subrgss | |- ( T e. ( SubRing ` R ) -> T C_ ( Base ` R ) ) |
| 12 | 6 11 | syl | |- ( ph -> T C_ ( Base ` R ) ) |
| 13 | 9 12 | eqsstrrd | |- ( ph -> ( Base ` H ) C_ ( Base ` R ) ) |
| 14 | 13 | adantr | |- ( ( ph /\ I e. _V ) -> ( Base ` H ) C_ ( Base ` R ) ) |
| 15 | mapss | |- ( ( ( Base ` R ) e. _V /\ ( Base ` H ) C_ ( Base ` R ) ) -> ( ( Base ` H ) ^m { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } ) C_ ( ( Base ` R ) ^m { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } ) ) |
|
| 16 | 7 14 15 | sylancr | |- ( ( ph /\ I e. _V ) -> ( ( Base ` H ) ^m { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } ) C_ ( ( Base ` R ) ^m { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } ) ) |
| 17 | eqid | |- ( Base ` H ) = ( Base ` H ) |
|
| 18 | eqid | |- { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } = { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |
|
| 19 | simpr | |- ( ( ph /\ I e. _V ) -> I e. _V ) |
|
| 20 | 3 17 18 4 19 | psrbas | |- ( ( ph /\ I e. _V ) -> B = ( ( Base ` H ) ^m { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } ) ) |
| 21 | eqid | |- ( Base ` S ) = ( Base ` S ) |
|
| 22 | 1 10 18 21 19 | psrbas | |- ( ( ph /\ I e. _V ) -> ( Base ` S ) = ( ( Base ` R ) ^m { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } ) ) |
| 23 | 16 20 22 | 3sstr4d | |- ( ( ph /\ I e. _V ) -> B C_ ( Base ` S ) ) |
| 24 | reldmpsr | |- Rel dom mPwSer |
|
| 25 | 24 | ovprc1 | |- ( -. I e. _V -> ( I mPwSer H ) = (/) ) |
| 26 | 3 25 | eqtrid | |- ( -. I e. _V -> U = (/) ) |
| 27 | 26 | adantl | |- ( ( ph /\ -. I e. _V ) -> U = (/) ) |
| 28 | 27 | fveq2d | |- ( ( ph /\ -. I e. _V ) -> ( Base ` U ) = ( Base ` (/) ) ) |
| 29 | base0 | |- (/) = ( Base ` (/) ) |
|
| 30 | 28 4 29 | 3eqtr4g | |- ( ( ph /\ -. I e. _V ) -> B = (/) ) |
| 31 | 0ss | |- (/) C_ ( Base ` S ) |
|
| 32 | 30 31 | eqsstrdi | |- ( ( ph /\ -. I e. _V ) -> B C_ ( Base ` S ) ) |
| 33 | 23 32 | pm2.61dan | |- ( ph -> B C_ ( Base ` S ) ) |
| 34 | 5 21 | ressbas2 | |- ( B C_ ( Base ` S ) -> B = ( Base ` P ) ) |
| 35 | 33 34 | syl | |- ( ph -> B = ( Base ` P ) ) |