This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The ring of power series is a ring. (Contributed by Mario Carneiro, 29-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | psrring.s | |- S = ( I mPwSer R ) |
|
| psrring.i | |- ( ph -> I e. V ) |
||
| psrring.r | |- ( ph -> R e. Ring ) |
||
| Assertion | psrring | |- ( ph -> S e. Ring ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psrring.s | |- S = ( I mPwSer R ) |
|
| 2 | psrring.i | |- ( ph -> I e. V ) |
|
| 3 | psrring.r | |- ( ph -> R e. Ring ) |
|
| 4 | eqidd | |- ( ph -> ( Base ` S ) = ( Base ` S ) ) |
|
| 5 | eqidd | |- ( ph -> ( +g ` S ) = ( +g ` S ) ) |
|
| 6 | eqidd | |- ( ph -> ( .r ` S ) = ( .r ` S ) ) |
|
| 7 | ringgrp | |- ( R e. Ring -> R e. Grp ) |
|
| 8 | 3 7 | syl | |- ( ph -> R e. Grp ) |
| 9 | 1 2 8 | psrgrp | |- ( ph -> S e. Grp ) |
| 10 | eqid | |- ( Base ` S ) = ( Base ` S ) |
|
| 11 | eqid | |- ( .r ` S ) = ( .r ` S ) |
|
| 12 | 3 | 3ad2ant1 | |- ( ( ph /\ x e. ( Base ` S ) /\ y e. ( Base ` S ) ) -> R e. Ring ) |
| 13 | simp2 | |- ( ( ph /\ x e. ( Base ` S ) /\ y e. ( Base ` S ) ) -> x e. ( Base ` S ) ) |
|
| 14 | simp3 | |- ( ( ph /\ x e. ( Base ` S ) /\ y e. ( Base ` S ) ) -> y e. ( Base ` S ) ) |
|
| 15 | 1 10 11 12 13 14 | psrmulcl | |- ( ( ph /\ x e. ( Base ` S ) /\ y e. ( Base ` S ) ) -> ( x ( .r ` S ) y ) e. ( Base ` S ) ) |
| 16 | 2 | adantr | |- ( ( ph /\ ( x e. ( Base ` S ) /\ y e. ( Base ` S ) /\ z e. ( Base ` S ) ) ) -> I e. V ) |
| 17 | 3 | adantr | |- ( ( ph /\ ( x e. ( Base ` S ) /\ y e. ( Base ` S ) /\ z e. ( Base ` S ) ) ) -> R e. Ring ) |
| 18 | eqid | |- { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } = { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |
|
| 19 | simpr1 | |- ( ( ph /\ ( x e. ( Base ` S ) /\ y e. ( Base ` S ) /\ z e. ( Base ` S ) ) ) -> x e. ( Base ` S ) ) |
|
| 20 | simpr2 | |- ( ( ph /\ ( x e. ( Base ` S ) /\ y e. ( Base ` S ) /\ z e. ( Base ` S ) ) ) -> y e. ( Base ` S ) ) |
|
| 21 | simpr3 | |- ( ( ph /\ ( x e. ( Base ` S ) /\ y e. ( Base ` S ) /\ z e. ( Base ` S ) ) ) -> z e. ( Base ` S ) ) |
|
| 22 | 1 16 17 18 11 10 19 20 21 | psrass1 | |- ( ( ph /\ ( x e. ( Base ` S ) /\ y e. ( Base ` S ) /\ z e. ( Base ` S ) ) ) -> ( ( x ( .r ` S ) y ) ( .r ` S ) z ) = ( x ( .r ` S ) ( y ( .r ` S ) z ) ) ) |
| 23 | eqid | |- ( +g ` S ) = ( +g ` S ) |
|
| 24 | 1 16 17 18 11 10 19 20 21 23 | psrdi | |- ( ( ph /\ ( x e. ( Base ` S ) /\ y e. ( Base ` S ) /\ z e. ( Base ` S ) ) ) -> ( x ( .r ` S ) ( y ( +g ` S ) z ) ) = ( ( x ( .r ` S ) y ) ( +g ` S ) ( x ( .r ` S ) z ) ) ) |
| 25 | 1 16 17 18 11 10 19 20 21 23 | psrdir | |- ( ( ph /\ ( x e. ( Base ` S ) /\ y e. ( Base ` S ) /\ z e. ( Base ` S ) ) ) -> ( ( x ( +g ` S ) y ) ( .r ` S ) z ) = ( ( x ( .r ` S ) z ) ( +g ` S ) ( y ( .r ` S ) z ) ) ) |
| 26 | eqid | |- ( 0g ` R ) = ( 0g ` R ) |
|
| 27 | eqid | |- ( 1r ` R ) = ( 1r ` R ) |
|
| 28 | eqid | |- ( r e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |-> if ( r = ( I X. { 0 } ) , ( 1r ` R ) , ( 0g ` R ) ) ) = ( r e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |-> if ( r = ( I X. { 0 } ) , ( 1r ` R ) , ( 0g ` R ) ) ) |
|
| 29 | 1 2 3 18 26 27 28 10 | psr1cl | |- ( ph -> ( r e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |-> if ( r = ( I X. { 0 } ) , ( 1r ` R ) , ( 0g ` R ) ) ) e. ( Base ` S ) ) |
| 30 | 2 | adantr | |- ( ( ph /\ x e. ( Base ` S ) ) -> I e. V ) |
| 31 | 3 | adantr | |- ( ( ph /\ x e. ( Base ` S ) ) -> R e. Ring ) |
| 32 | simpr | |- ( ( ph /\ x e. ( Base ` S ) ) -> x e. ( Base ` S ) ) |
|
| 33 | 1 30 31 18 26 27 28 10 11 32 | psrlidm | |- ( ( ph /\ x e. ( Base ` S ) ) -> ( ( r e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |-> if ( r = ( I X. { 0 } ) , ( 1r ` R ) , ( 0g ` R ) ) ) ( .r ` S ) x ) = x ) |
| 34 | 1 30 31 18 26 27 28 10 11 32 | psrridm | |- ( ( ph /\ x e. ( Base ` S ) ) -> ( x ( .r ` S ) ( r e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |-> if ( r = ( I X. { 0 } ) , ( 1r ` R ) , ( 0g ` R ) ) ) ) = x ) |
| 35 | 4 5 6 9 15 22 24 25 29 33 34 | isringd | |- ( ph -> S e. Ring ) |