This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If two structures have the same base set, and the values of their group (addition) and ring (multiplication) operations are equal for all pairs of elements of the base set, one is a ring iff the other one is. (Contributed by Mario Carneiro, 6-Dec-2014) (Revised by Mario Carneiro, 6-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ringpropd.1 | |- ( ph -> B = ( Base ` K ) ) |
|
| ringpropd.2 | |- ( ph -> B = ( Base ` L ) ) |
||
| ringpropd.3 | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( +g ` K ) y ) = ( x ( +g ` L ) y ) ) |
||
| ringpropd.4 | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( .r ` K ) y ) = ( x ( .r ` L ) y ) ) |
||
| Assertion | ringpropd | |- ( ph -> ( K e. Ring <-> L e. Ring ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringpropd.1 | |- ( ph -> B = ( Base ` K ) ) |
|
| 2 | ringpropd.2 | |- ( ph -> B = ( Base ` L ) ) |
|
| 3 | ringpropd.3 | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( +g ` K ) y ) = ( x ( +g ` L ) y ) ) |
|
| 4 | ringpropd.4 | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( .r ` K ) y ) = ( x ( .r ` L ) y ) ) |
|
| 5 | simpll | |- ( ( ( ph /\ ( K e. Grp /\ ( mulGrp ` K ) e. Mnd ) ) /\ ( ( u e. B /\ v e. B ) /\ w e. B ) ) -> ph ) |
|
| 6 | simprll | |- ( ( ( ph /\ ( K e. Grp /\ ( mulGrp ` K ) e. Mnd ) ) /\ ( ( u e. B /\ v e. B ) /\ w e. B ) ) -> u e. B ) |
|
| 7 | simplrl | |- ( ( ( ph /\ ( K e. Grp /\ ( mulGrp ` K ) e. Mnd ) ) /\ ( ( u e. B /\ v e. B ) /\ w e. B ) ) -> K e. Grp ) |
|
| 8 | simprlr | |- ( ( ( ph /\ ( K e. Grp /\ ( mulGrp ` K ) e. Mnd ) ) /\ ( ( u e. B /\ v e. B ) /\ w e. B ) ) -> v e. B ) |
|
| 9 | 1 | ad2antrr | |- ( ( ( ph /\ ( K e. Grp /\ ( mulGrp ` K ) e. Mnd ) ) /\ ( ( u e. B /\ v e. B ) /\ w e. B ) ) -> B = ( Base ` K ) ) |
| 10 | 8 9 | eleqtrd | |- ( ( ( ph /\ ( K e. Grp /\ ( mulGrp ` K ) e. Mnd ) ) /\ ( ( u e. B /\ v e. B ) /\ w e. B ) ) -> v e. ( Base ` K ) ) |
| 11 | simprr | |- ( ( ( ph /\ ( K e. Grp /\ ( mulGrp ` K ) e. Mnd ) ) /\ ( ( u e. B /\ v e. B ) /\ w e. B ) ) -> w e. B ) |
|
| 12 | 11 9 | eleqtrd | |- ( ( ( ph /\ ( K e. Grp /\ ( mulGrp ` K ) e. Mnd ) ) /\ ( ( u e. B /\ v e. B ) /\ w e. B ) ) -> w e. ( Base ` K ) ) |
| 13 | eqid | |- ( Base ` K ) = ( Base ` K ) |
|
| 14 | eqid | |- ( +g ` K ) = ( +g ` K ) |
|
| 15 | 13 14 | grpcl | |- ( ( K e. Grp /\ v e. ( Base ` K ) /\ w e. ( Base ` K ) ) -> ( v ( +g ` K ) w ) e. ( Base ` K ) ) |
| 16 | 7 10 12 15 | syl3anc | |- ( ( ( ph /\ ( K e. Grp /\ ( mulGrp ` K ) e. Mnd ) ) /\ ( ( u e. B /\ v e. B ) /\ w e. B ) ) -> ( v ( +g ` K ) w ) e. ( Base ` K ) ) |
| 17 | 16 9 | eleqtrrd | |- ( ( ( ph /\ ( K e. Grp /\ ( mulGrp ` K ) e. Mnd ) ) /\ ( ( u e. B /\ v e. B ) /\ w e. B ) ) -> ( v ( +g ` K ) w ) e. B ) |
| 18 | 4 | oveqrspc2v | |- ( ( ph /\ ( u e. B /\ ( v ( +g ` K ) w ) e. B ) ) -> ( u ( .r ` K ) ( v ( +g ` K ) w ) ) = ( u ( .r ` L ) ( v ( +g ` K ) w ) ) ) |
| 19 | 5 6 17 18 | syl12anc | |- ( ( ( ph /\ ( K e. Grp /\ ( mulGrp ` K ) e. Mnd ) ) /\ ( ( u e. B /\ v e. B ) /\ w e. B ) ) -> ( u ( .r ` K ) ( v ( +g ` K ) w ) ) = ( u ( .r ` L ) ( v ( +g ` K ) w ) ) ) |
| 20 | 3 | oveqrspc2v | |- ( ( ph /\ ( v e. B /\ w e. B ) ) -> ( v ( +g ` K ) w ) = ( v ( +g ` L ) w ) ) |
| 21 | 5 8 11 20 | syl12anc | |- ( ( ( ph /\ ( K e. Grp /\ ( mulGrp ` K ) e. Mnd ) ) /\ ( ( u e. B /\ v e. B ) /\ w e. B ) ) -> ( v ( +g ` K ) w ) = ( v ( +g ` L ) w ) ) |
| 22 | 21 | oveq2d | |- ( ( ( ph /\ ( K e. Grp /\ ( mulGrp ` K ) e. Mnd ) ) /\ ( ( u e. B /\ v e. B ) /\ w e. B ) ) -> ( u ( .r ` L ) ( v ( +g ` K ) w ) ) = ( u ( .r ` L ) ( v ( +g ` L ) w ) ) ) |
| 23 | 19 22 | eqtrd | |- ( ( ( ph /\ ( K e. Grp /\ ( mulGrp ` K ) e. Mnd ) ) /\ ( ( u e. B /\ v e. B ) /\ w e. B ) ) -> ( u ( .r ` K ) ( v ( +g ` K ) w ) ) = ( u ( .r ` L ) ( v ( +g ` L ) w ) ) ) |
| 24 | simplrr | |- ( ( ( ph /\ ( K e. Grp /\ ( mulGrp ` K ) e. Mnd ) ) /\ ( ( u e. B /\ v e. B ) /\ w e. B ) ) -> ( mulGrp ` K ) e. Mnd ) |
|
| 25 | 6 9 | eleqtrd | |- ( ( ( ph /\ ( K e. Grp /\ ( mulGrp ` K ) e. Mnd ) ) /\ ( ( u e. B /\ v e. B ) /\ w e. B ) ) -> u e. ( Base ` K ) ) |
| 26 | eqid | |- ( mulGrp ` K ) = ( mulGrp ` K ) |
|
| 27 | 26 13 | mgpbas | |- ( Base ` K ) = ( Base ` ( mulGrp ` K ) ) |
| 28 | eqid | |- ( .r ` K ) = ( .r ` K ) |
|
| 29 | 26 28 | mgpplusg | |- ( .r ` K ) = ( +g ` ( mulGrp ` K ) ) |
| 30 | 27 29 | mndcl | |- ( ( ( mulGrp ` K ) e. Mnd /\ u e. ( Base ` K ) /\ v e. ( Base ` K ) ) -> ( u ( .r ` K ) v ) e. ( Base ` K ) ) |
| 31 | 24 25 10 30 | syl3anc | |- ( ( ( ph /\ ( K e. Grp /\ ( mulGrp ` K ) e. Mnd ) ) /\ ( ( u e. B /\ v e. B ) /\ w e. B ) ) -> ( u ( .r ` K ) v ) e. ( Base ` K ) ) |
| 32 | 31 9 | eleqtrrd | |- ( ( ( ph /\ ( K e. Grp /\ ( mulGrp ` K ) e. Mnd ) ) /\ ( ( u e. B /\ v e. B ) /\ w e. B ) ) -> ( u ( .r ` K ) v ) e. B ) |
| 33 | 27 29 | mndcl | |- ( ( ( mulGrp ` K ) e. Mnd /\ u e. ( Base ` K ) /\ w e. ( Base ` K ) ) -> ( u ( .r ` K ) w ) e. ( Base ` K ) ) |
| 34 | 24 25 12 33 | syl3anc | |- ( ( ( ph /\ ( K e. Grp /\ ( mulGrp ` K ) e. Mnd ) ) /\ ( ( u e. B /\ v e. B ) /\ w e. B ) ) -> ( u ( .r ` K ) w ) e. ( Base ` K ) ) |
| 35 | 34 9 | eleqtrrd | |- ( ( ( ph /\ ( K e. Grp /\ ( mulGrp ` K ) e. Mnd ) ) /\ ( ( u e. B /\ v e. B ) /\ w e. B ) ) -> ( u ( .r ` K ) w ) e. B ) |
| 36 | 3 | oveqrspc2v | |- ( ( ph /\ ( ( u ( .r ` K ) v ) e. B /\ ( u ( .r ` K ) w ) e. B ) ) -> ( ( u ( .r ` K ) v ) ( +g ` K ) ( u ( .r ` K ) w ) ) = ( ( u ( .r ` K ) v ) ( +g ` L ) ( u ( .r ` K ) w ) ) ) |
| 37 | 5 32 35 36 | syl12anc | |- ( ( ( ph /\ ( K e. Grp /\ ( mulGrp ` K ) e. Mnd ) ) /\ ( ( u e. B /\ v e. B ) /\ w e. B ) ) -> ( ( u ( .r ` K ) v ) ( +g ` K ) ( u ( .r ` K ) w ) ) = ( ( u ( .r ` K ) v ) ( +g ` L ) ( u ( .r ` K ) w ) ) ) |
| 38 | 4 | oveqrspc2v | |- ( ( ph /\ ( u e. B /\ v e. B ) ) -> ( u ( .r ` K ) v ) = ( u ( .r ` L ) v ) ) |
| 39 | 5 6 8 38 | syl12anc | |- ( ( ( ph /\ ( K e. Grp /\ ( mulGrp ` K ) e. Mnd ) ) /\ ( ( u e. B /\ v e. B ) /\ w e. B ) ) -> ( u ( .r ` K ) v ) = ( u ( .r ` L ) v ) ) |
| 40 | 4 | oveqrspc2v | |- ( ( ph /\ ( u e. B /\ w e. B ) ) -> ( u ( .r ` K ) w ) = ( u ( .r ` L ) w ) ) |
| 41 | 5 6 11 40 | syl12anc | |- ( ( ( ph /\ ( K e. Grp /\ ( mulGrp ` K ) e. Mnd ) ) /\ ( ( u e. B /\ v e. B ) /\ w e. B ) ) -> ( u ( .r ` K ) w ) = ( u ( .r ` L ) w ) ) |
| 42 | 39 41 | oveq12d | |- ( ( ( ph /\ ( K e. Grp /\ ( mulGrp ` K ) e. Mnd ) ) /\ ( ( u e. B /\ v e. B ) /\ w e. B ) ) -> ( ( u ( .r ` K ) v ) ( +g ` L ) ( u ( .r ` K ) w ) ) = ( ( u ( .r ` L ) v ) ( +g ` L ) ( u ( .r ` L ) w ) ) ) |
| 43 | 37 42 | eqtrd | |- ( ( ( ph /\ ( K e. Grp /\ ( mulGrp ` K ) e. Mnd ) ) /\ ( ( u e. B /\ v e. B ) /\ w e. B ) ) -> ( ( u ( .r ` K ) v ) ( +g ` K ) ( u ( .r ` K ) w ) ) = ( ( u ( .r ` L ) v ) ( +g ` L ) ( u ( .r ` L ) w ) ) ) |
| 44 | 23 43 | eqeq12d | |- ( ( ( ph /\ ( K e. Grp /\ ( mulGrp ` K ) e. Mnd ) ) /\ ( ( u e. B /\ v e. B ) /\ w e. B ) ) -> ( ( u ( .r ` K ) ( v ( +g ` K ) w ) ) = ( ( u ( .r ` K ) v ) ( +g ` K ) ( u ( .r ` K ) w ) ) <-> ( u ( .r ` L ) ( v ( +g ` L ) w ) ) = ( ( u ( .r ` L ) v ) ( +g ` L ) ( u ( .r ` L ) w ) ) ) ) |
| 45 | 13 14 | grpcl | |- ( ( K e. Grp /\ u e. ( Base ` K ) /\ v e. ( Base ` K ) ) -> ( u ( +g ` K ) v ) e. ( Base ` K ) ) |
| 46 | 7 25 10 45 | syl3anc | |- ( ( ( ph /\ ( K e. Grp /\ ( mulGrp ` K ) e. Mnd ) ) /\ ( ( u e. B /\ v e. B ) /\ w e. B ) ) -> ( u ( +g ` K ) v ) e. ( Base ` K ) ) |
| 47 | 46 9 | eleqtrrd | |- ( ( ( ph /\ ( K e. Grp /\ ( mulGrp ` K ) e. Mnd ) ) /\ ( ( u e. B /\ v e. B ) /\ w e. B ) ) -> ( u ( +g ` K ) v ) e. B ) |
| 48 | 4 | oveqrspc2v | |- ( ( ph /\ ( ( u ( +g ` K ) v ) e. B /\ w e. B ) ) -> ( ( u ( +g ` K ) v ) ( .r ` K ) w ) = ( ( u ( +g ` K ) v ) ( .r ` L ) w ) ) |
| 49 | 5 47 11 48 | syl12anc | |- ( ( ( ph /\ ( K e. Grp /\ ( mulGrp ` K ) e. Mnd ) ) /\ ( ( u e. B /\ v e. B ) /\ w e. B ) ) -> ( ( u ( +g ` K ) v ) ( .r ` K ) w ) = ( ( u ( +g ` K ) v ) ( .r ` L ) w ) ) |
| 50 | 3 | oveqrspc2v | |- ( ( ph /\ ( u e. B /\ v e. B ) ) -> ( u ( +g ` K ) v ) = ( u ( +g ` L ) v ) ) |
| 51 | 5 6 8 50 | syl12anc | |- ( ( ( ph /\ ( K e. Grp /\ ( mulGrp ` K ) e. Mnd ) ) /\ ( ( u e. B /\ v e. B ) /\ w e. B ) ) -> ( u ( +g ` K ) v ) = ( u ( +g ` L ) v ) ) |
| 52 | 51 | oveq1d | |- ( ( ( ph /\ ( K e. Grp /\ ( mulGrp ` K ) e. Mnd ) ) /\ ( ( u e. B /\ v e. B ) /\ w e. B ) ) -> ( ( u ( +g ` K ) v ) ( .r ` L ) w ) = ( ( u ( +g ` L ) v ) ( .r ` L ) w ) ) |
| 53 | 49 52 | eqtrd | |- ( ( ( ph /\ ( K e. Grp /\ ( mulGrp ` K ) e. Mnd ) ) /\ ( ( u e. B /\ v e. B ) /\ w e. B ) ) -> ( ( u ( +g ` K ) v ) ( .r ` K ) w ) = ( ( u ( +g ` L ) v ) ( .r ` L ) w ) ) |
| 54 | 27 29 | mndcl | |- ( ( ( mulGrp ` K ) e. Mnd /\ v e. ( Base ` K ) /\ w e. ( Base ` K ) ) -> ( v ( .r ` K ) w ) e. ( Base ` K ) ) |
| 55 | 24 10 12 54 | syl3anc | |- ( ( ( ph /\ ( K e. Grp /\ ( mulGrp ` K ) e. Mnd ) ) /\ ( ( u e. B /\ v e. B ) /\ w e. B ) ) -> ( v ( .r ` K ) w ) e. ( Base ` K ) ) |
| 56 | 55 9 | eleqtrrd | |- ( ( ( ph /\ ( K e. Grp /\ ( mulGrp ` K ) e. Mnd ) ) /\ ( ( u e. B /\ v e. B ) /\ w e. B ) ) -> ( v ( .r ` K ) w ) e. B ) |
| 57 | 3 | oveqrspc2v | |- ( ( ph /\ ( ( u ( .r ` K ) w ) e. B /\ ( v ( .r ` K ) w ) e. B ) ) -> ( ( u ( .r ` K ) w ) ( +g ` K ) ( v ( .r ` K ) w ) ) = ( ( u ( .r ` K ) w ) ( +g ` L ) ( v ( .r ` K ) w ) ) ) |
| 58 | 5 35 56 57 | syl12anc | |- ( ( ( ph /\ ( K e. Grp /\ ( mulGrp ` K ) e. Mnd ) ) /\ ( ( u e. B /\ v e. B ) /\ w e. B ) ) -> ( ( u ( .r ` K ) w ) ( +g ` K ) ( v ( .r ` K ) w ) ) = ( ( u ( .r ` K ) w ) ( +g ` L ) ( v ( .r ` K ) w ) ) ) |
| 59 | 4 | oveqrspc2v | |- ( ( ph /\ ( v e. B /\ w e. B ) ) -> ( v ( .r ` K ) w ) = ( v ( .r ` L ) w ) ) |
| 60 | 5 8 11 59 | syl12anc | |- ( ( ( ph /\ ( K e. Grp /\ ( mulGrp ` K ) e. Mnd ) ) /\ ( ( u e. B /\ v e. B ) /\ w e. B ) ) -> ( v ( .r ` K ) w ) = ( v ( .r ` L ) w ) ) |
| 61 | 41 60 | oveq12d | |- ( ( ( ph /\ ( K e. Grp /\ ( mulGrp ` K ) e. Mnd ) ) /\ ( ( u e. B /\ v e. B ) /\ w e. B ) ) -> ( ( u ( .r ` K ) w ) ( +g ` L ) ( v ( .r ` K ) w ) ) = ( ( u ( .r ` L ) w ) ( +g ` L ) ( v ( .r ` L ) w ) ) ) |
| 62 | 58 61 | eqtrd | |- ( ( ( ph /\ ( K e. Grp /\ ( mulGrp ` K ) e. Mnd ) ) /\ ( ( u e. B /\ v e. B ) /\ w e. B ) ) -> ( ( u ( .r ` K ) w ) ( +g ` K ) ( v ( .r ` K ) w ) ) = ( ( u ( .r ` L ) w ) ( +g ` L ) ( v ( .r ` L ) w ) ) ) |
| 63 | 53 62 | eqeq12d | |- ( ( ( ph /\ ( K e. Grp /\ ( mulGrp ` K ) e. Mnd ) ) /\ ( ( u e. B /\ v e. B ) /\ w e. B ) ) -> ( ( ( u ( +g ` K ) v ) ( .r ` K ) w ) = ( ( u ( .r ` K ) w ) ( +g ` K ) ( v ( .r ` K ) w ) ) <-> ( ( u ( +g ` L ) v ) ( .r ` L ) w ) = ( ( u ( .r ` L ) w ) ( +g ` L ) ( v ( .r ` L ) w ) ) ) ) |
| 64 | 44 63 | anbi12d | |- ( ( ( ph /\ ( K e. Grp /\ ( mulGrp ` K ) e. Mnd ) ) /\ ( ( u e. B /\ v e. B ) /\ w e. B ) ) -> ( ( ( u ( .r ` K ) ( v ( +g ` K ) w ) ) = ( ( u ( .r ` K ) v ) ( +g ` K ) ( u ( .r ` K ) w ) ) /\ ( ( u ( +g ` K ) v ) ( .r ` K ) w ) = ( ( u ( .r ` K ) w ) ( +g ` K ) ( v ( .r ` K ) w ) ) ) <-> ( ( u ( .r ` L ) ( v ( +g ` L ) w ) ) = ( ( u ( .r ` L ) v ) ( +g ` L ) ( u ( .r ` L ) w ) ) /\ ( ( u ( +g ` L ) v ) ( .r ` L ) w ) = ( ( u ( .r ` L ) w ) ( +g ` L ) ( v ( .r ` L ) w ) ) ) ) ) |
| 65 | 64 | anassrs | |- ( ( ( ( ph /\ ( K e. Grp /\ ( mulGrp ` K ) e. Mnd ) ) /\ ( u e. B /\ v e. B ) ) /\ w e. B ) -> ( ( ( u ( .r ` K ) ( v ( +g ` K ) w ) ) = ( ( u ( .r ` K ) v ) ( +g ` K ) ( u ( .r ` K ) w ) ) /\ ( ( u ( +g ` K ) v ) ( .r ` K ) w ) = ( ( u ( .r ` K ) w ) ( +g ` K ) ( v ( .r ` K ) w ) ) ) <-> ( ( u ( .r ` L ) ( v ( +g ` L ) w ) ) = ( ( u ( .r ` L ) v ) ( +g ` L ) ( u ( .r ` L ) w ) ) /\ ( ( u ( +g ` L ) v ) ( .r ` L ) w ) = ( ( u ( .r ` L ) w ) ( +g ` L ) ( v ( .r ` L ) w ) ) ) ) ) |
| 66 | 65 | ralbidva | |- ( ( ( ph /\ ( K e. Grp /\ ( mulGrp ` K ) e. Mnd ) ) /\ ( u e. B /\ v e. B ) ) -> ( A. w e. B ( ( u ( .r ` K ) ( v ( +g ` K ) w ) ) = ( ( u ( .r ` K ) v ) ( +g ` K ) ( u ( .r ` K ) w ) ) /\ ( ( u ( +g ` K ) v ) ( .r ` K ) w ) = ( ( u ( .r ` K ) w ) ( +g ` K ) ( v ( .r ` K ) w ) ) ) <-> A. w e. B ( ( u ( .r ` L ) ( v ( +g ` L ) w ) ) = ( ( u ( .r ` L ) v ) ( +g ` L ) ( u ( .r ` L ) w ) ) /\ ( ( u ( +g ` L ) v ) ( .r ` L ) w ) = ( ( u ( .r ` L ) w ) ( +g ` L ) ( v ( .r ` L ) w ) ) ) ) ) |
| 67 | 66 | 2ralbidva | |- ( ( ph /\ ( K e. Grp /\ ( mulGrp ` K ) e. Mnd ) ) -> ( A. u e. B A. v e. B A. w e. B ( ( u ( .r ` K ) ( v ( +g ` K ) w ) ) = ( ( u ( .r ` K ) v ) ( +g ` K ) ( u ( .r ` K ) w ) ) /\ ( ( u ( +g ` K ) v ) ( .r ` K ) w ) = ( ( u ( .r ` K ) w ) ( +g ` K ) ( v ( .r ` K ) w ) ) ) <-> A. u e. B A. v e. B A. w e. B ( ( u ( .r ` L ) ( v ( +g ` L ) w ) ) = ( ( u ( .r ` L ) v ) ( +g ` L ) ( u ( .r ` L ) w ) ) /\ ( ( u ( +g ` L ) v ) ( .r ` L ) w ) = ( ( u ( .r ` L ) w ) ( +g ` L ) ( v ( .r ` L ) w ) ) ) ) ) |
| 68 | 1 | adantr | |- ( ( ph /\ ( K e. Grp /\ ( mulGrp ` K ) e. Mnd ) ) -> B = ( Base ` K ) ) |
| 69 | 68 | raleqdv | |- ( ( ph /\ ( K e. Grp /\ ( mulGrp ` K ) e. Mnd ) ) -> ( A. w e. B ( ( u ( .r ` K ) ( v ( +g ` K ) w ) ) = ( ( u ( .r ` K ) v ) ( +g ` K ) ( u ( .r ` K ) w ) ) /\ ( ( u ( +g ` K ) v ) ( .r ` K ) w ) = ( ( u ( .r ` K ) w ) ( +g ` K ) ( v ( .r ` K ) w ) ) ) <-> A. w e. ( Base ` K ) ( ( u ( .r ` K ) ( v ( +g ` K ) w ) ) = ( ( u ( .r ` K ) v ) ( +g ` K ) ( u ( .r ` K ) w ) ) /\ ( ( u ( +g ` K ) v ) ( .r ` K ) w ) = ( ( u ( .r ` K ) w ) ( +g ` K ) ( v ( .r ` K ) w ) ) ) ) ) |
| 70 | 68 69 | raleqbidv | |- ( ( ph /\ ( K e. Grp /\ ( mulGrp ` K ) e. Mnd ) ) -> ( A. v e. B A. w e. B ( ( u ( .r ` K ) ( v ( +g ` K ) w ) ) = ( ( u ( .r ` K ) v ) ( +g ` K ) ( u ( .r ` K ) w ) ) /\ ( ( u ( +g ` K ) v ) ( .r ` K ) w ) = ( ( u ( .r ` K ) w ) ( +g ` K ) ( v ( .r ` K ) w ) ) ) <-> A. v e. ( Base ` K ) A. w e. ( Base ` K ) ( ( u ( .r ` K ) ( v ( +g ` K ) w ) ) = ( ( u ( .r ` K ) v ) ( +g ` K ) ( u ( .r ` K ) w ) ) /\ ( ( u ( +g ` K ) v ) ( .r ` K ) w ) = ( ( u ( .r ` K ) w ) ( +g ` K ) ( v ( .r ` K ) w ) ) ) ) ) |
| 71 | 68 70 | raleqbidv | |- ( ( ph /\ ( K e. Grp /\ ( mulGrp ` K ) e. Mnd ) ) -> ( A. u e. B A. v e. B A. w e. B ( ( u ( .r ` K ) ( v ( +g ` K ) w ) ) = ( ( u ( .r ` K ) v ) ( +g ` K ) ( u ( .r ` K ) w ) ) /\ ( ( u ( +g ` K ) v ) ( .r ` K ) w ) = ( ( u ( .r ` K ) w ) ( +g ` K ) ( v ( .r ` K ) w ) ) ) <-> A. u e. ( Base ` K ) A. v e. ( Base ` K ) A. w e. ( Base ` K ) ( ( u ( .r ` K ) ( v ( +g ` K ) w ) ) = ( ( u ( .r ` K ) v ) ( +g ` K ) ( u ( .r ` K ) w ) ) /\ ( ( u ( +g ` K ) v ) ( .r ` K ) w ) = ( ( u ( .r ` K ) w ) ( +g ` K ) ( v ( .r ` K ) w ) ) ) ) ) |
| 72 | 2 | adantr | |- ( ( ph /\ ( K e. Grp /\ ( mulGrp ` K ) e. Mnd ) ) -> B = ( Base ` L ) ) |
| 73 | 72 | raleqdv | |- ( ( ph /\ ( K e. Grp /\ ( mulGrp ` K ) e. Mnd ) ) -> ( A. w e. B ( ( u ( .r ` L ) ( v ( +g ` L ) w ) ) = ( ( u ( .r ` L ) v ) ( +g ` L ) ( u ( .r ` L ) w ) ) /\ ( ( u ( +g ` L ) v ) ( .r ` L ) w ) = ( ( u ( .r ` L ) w ) ( +g ` L ) ( v ( .r ` L ) w ) ) ) <-> A. w e. ( Base ` L ) ( ( u ( .r ` L ) ( v ( +g ` L ) w ) ) = ( ( u ( .r ` L ) v ) ( +g ` L ) ( u ( .r ` L ) w ) ) /\ ( ( u ( +g ` L ) v ) ( .r ` L ) w ) = ( ( u ( .r ` L ) w ) ( +g ` L ) ( v ( .r ` L ) w ) ) ) ) ) |
| 74 | 72 73 | raleqbidv | |- ( ( ph /\ ( K e. Grp /\ ( mulGrp ` K ) e. Mnd ) ) -> ( A. v e. B A. w e. B ( ( u ( .r ` L ) ( v ( +g ` L ) w ) ) = ( ( u ( .r ` L ) v ) ( +g ` L ) ( u ( .r ` L ) w ) ) /\ ( ( u ( +g ` L ) v ) ( .r ` L ) w ) = ( ( u ( .r ` L ) w ) ( +g ` L ) ( v ( .r ` L ) w ) ) ) <-> A. v e. ( Base ` L ) A. w e. ( Base ` L ) ( ( u ( .r ` L ) ( v ( +g ` L ) w ) ) = ( ( u ( .r ` L ) v ) ( +g ` L ) ( u ( .r ` L ) w ) ) /\ ( ( u ( +g ` L ) v ) ( .r ` L ) w ) = ( ( u ( .r ` L ) w ) ( +g ` L ) ( v ( .r ` L ) w ) ) ) ) ) |
| 75 | 72 74 | raleqbidv | |- ( ( ph /\ ( K e. Grp /\ ( mulGrp ` K ) e. Mnd ) ) -> ( A. u e. B A. v e. B A. w e. B ( ( u ( .r ` L ) ( v ( +g ` L ) w ) ) = ( ( u ( .r ` L ) v ) ( +g ` L ) ( u ( .r ` L ) w ) ) /\ ( ( u ( +g ` L ) v ) ( .r ` L ) w ) = ( ( u ( .r ` L ) w ) ( +g ` L ) ( v ( .r ` L ) w ) ) ) <-> A. u e. ( Base ` L ) A. v e. ( Base ` L ) A. w e. ( Base ` L ) ( ( u ( .r ` L ) ( v ( +g ` L ) w ) ) = ( ( u ( .r ` L ) v ) ( +g ` L ) ( u ( .r ` L ) w ) ) /\ ( ( u ( +g ` L ) v ) ( .r ` L ) w ) = ( ( u ( .r ` L ) w ) ( +g ` L ) ( v ( .r ` L ) w ) ) ) ) ) |
| 76 | 67 71 75 | 3bitr3d | |- ( ( ph /\ ( K e. Grp /\ ( mulGrp ` K ) e. Mnd ) ) -> ( A. u e. ( Base ` K ) A. v e. ( Base ` K ) A. w e. ( Base ` K ) ( ( u ( .r ` K ) ( v ( +g ` K ) w ) ) = ( ( u ( .r ` K ) v ) ( +g ` K ) ( u ( .r ` K ) w ) ) /\ ( ( u ( +g ` K ) v ) ( .r ` K ) w ) = ( ( u ( .r ` K ) w ) ( +g ` K ) ( v ( .r ` K ) w ) ) ) <-> A. u e. ( Base ` L ) A. v e. ( Base ` L ) A. w e. ( Base ` L ) ( ( u ( .r ` L ) ( v ( +g ` L ) w ) ) = ( ( u ( .r ` L ) v ) ( +g ` L ) ( u ( .r ` L ) w ) ) /\ ( ( u ( +g ` L ) v ) ( .r ` L ) w ) = ( ( u ( .r ` L ) w ) ( +g ` L ) ( v ( .r ` L ) w ) ) ) ) ) |
| 77 | 76 | pm5.32da | |- ( ph -> ( ( ( K e. Grp /\ ( mulGrp ` K ) e. Mnd ) /\ A. u e. ( Base ` K ) A. v e. ( Base ` K ) A. w e. ( Base ` K ) ( ( u ( .r ` K ) ( v ( +g ` K ) w ) ) = ( ( u ( .r ` K ) v ) ( +g ` K ) ( u ( .r ` K ) w ) ) /\ ( ( u ( +g ` K ) v ) ( .r ` K ) w ) = ( ( u ( .r ` K ) w ) ( +g ` K ) ( v ( .r ` K ) w ) ) ) ) <-> ( ( K e. Grp /\ ( mulGrp ` K ) e. Mnd ) /\ A. u e. ( Base ` L ) A. v e. ( Base ` L ) A. w e. ( Base ` L ) ( ( u ( .r ` L ) ( v ( +g ` L ) w ) ) = ( ( u ( .r ` L ) v ) ( +g ` L ) ( u ( .r ` L ) w ) ) /\ ( ( u ( +g ` L ) v ) ( .r ` L ) w ) = ( ( u ( .r ` L ) w ) ( +g ` L ) ( v ( .r ` L ) w ) ) ) ) ) ) |
| 78 | df-3an | |- ( ( K e. Grp /\ ( mulGrp ` K ) e. Mnd /\ A. u e. ( Base ` K ) A. v e. ( Base ` K ) A. w e. ( Base ` K ) ( ( u ( .r ` K ) ( v ( +g ` K ) w ) ) = ( ( u ( .r ` K ) v ) ( +g ` K ) ( u ( .r ` K ) w ) ) /\ ( ( u ( +g ` K ) v ) ( .r ` K ) w ) = ( ( u ( .r ` K ) w ) ( +g ` K ) ( v ( .r ` K ) w ) ) ) ) <-> ( ( K e. Grp /\ ( mulGrp ` K ) e. Mnd ) /\ A. u e. ( Base ` K ) A. v e. ( Base ` K ) A. w e. ( Base ` K ) ( ( u ( .r ` K ) ( v ( +g ` K ) w ) ) = ( ( u ( .r ` K ) v ) ( +g ` K ) ( u ( .r ` K ) w ) ) /\ ( ( u ( +g ` K ) v ) ( .r ` K ) w ) = ( ( u ( .r ` K ) w ) ( +g ` K ) ( v ( .r ` K ) w ) ) ) ) ) |
|
| 79 | df-3an | |- ( ( K e. Grp /\ ( mulGrp ` K ) e. Mnd /\ A. u e. ( Base ` L ) A. v e. ( Base ` L ) A. w e. ( Base ` L ) ( ( u ( .r ` L ) ( v ( +g ` L ) w ) ) = ( ( u ( .r ` L ) v ) ( +g ` L ) ( u ( .r ` L ) w ) ) /\ ( ( u ( +g ` L ) v ) ( .r ` L ) w ) = ( ( u ( .r ` L ) w ) ( +g ` L ) ( v ( .r ` L ) w ) ) ) ) <-> ( ( K e. Grp /\ ( mulGrp ` K ) e. Mnd ) /\ A. u e. ( Base ` L ) A. v e. ( Base ` L ) A. w e. ( Base ` L ) ( ( u ( .r ` L ) ( v ( +g ` L ) w ) ) = ( ( u ( .r ` L ) v ) ( +g ` L ) ( u ( .r ` L ) w ) ) /\ ( ( u ( +g ` L ) v ) ( .r ` L ) w ) = ( ( u ( .r ` L ) w ) ( +g ` L ) ( v ( .r ` L ) w ) ) ) ) ) |
|
| 80 | 77 78 79 | 3bitr4g | |- ( ph -> ( ( K e. Grp /\ ( mulGrp ` K ) e. Mnd /\ A. u e. ( Base ` K ) A. v e. ( Base ` K ) A. w e. ( Base ` K ) ( ( u ( .r ` K ) ( v ( +g ` K ) w ) ) = ( ( u ( .r ` K ) v ) ( +g ` K ) ( u ( .r ` K ) w ) ) /\ ( ( u ( +g ` K ) v ) ( .r ` K ) w ) = ( ( u ( .r ` K ) w ) ( +g ` K ) ( v ( .r ` K ) w ) ) ) ) <-> ( K e. Grp /\ ( mulGrp ` K ) e. Mnd /\ A. u e. ( Base ` L ) A. v e. ( Base ` L ) A. w e. ( Base ` L ) ( ( u ( .r ` L ) ( v ( +g ` L ) w ) ) = ( ( u ( .r ` L ) v ) ( +g ` L ) ( u ( .r ` L ) w ) ) /\ ( ( u ( +g ` L ) v ) ( .r ` L ) w ) = ( ( u ( .r ` L ) w ) ( +g ` L ) ( v ( .r ` L ) w ) ) ) ) ) ) |
| 81 | 1 2 3 | grppropd | |- ( ph -> ( K e. Grp <-> L e. Grp ) ) |
| 82 | 1 27 | eqtrdi | |- ( ph -> B = ( Base ` ( mulGrp ` K ) ) ) |
| 83 | eqid | |- ( mulGrp ` L ) = ( mulGrp ` L ) |
|
| 84 | eqid | |- ( Base ` L ) = ( Base ` L ) |
|
| 85 | 83 84 | mgpbas | |- ( Base ` L ) = ( Base ` ( mulGrp ` L ) ) |
| 86 | 2 85 | eqtrdi | |- ( ph -> B = ( Base ` ( mulGrp ` L ) ) ) |
| 87 | 29 | oveqi | |- ( x ( .r ` K ) y ) = ( x ( +g ` ( mulGrp ` K ) ) y ) |
| 88 | eqid | |- ( .r ` L ) = ( .r ` L ) |
|
| 89 | 83 88 | mgpplusg | |- ( .r ` L ) = ( +g ` ( mulGrp ` L ) ) |
| 90 | 89 | oveqi | |- ( x ( .r ` L ) y ) = ( x ( +g ` ( mulGrp ` L ) ) y ) |
| 91 | 4 87 90 | 3eqtr3g | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( +g ` ( mulGrp ` K ) ) y ) = ( x ( +g ` ( mulGrp ` L ) ) y ) ) |
| 92 | 82 86 91 | mndpropd | |- ( ph -> ( ( mulGrp ` K ) e. Mnd <-> ( mulGrp ` L ) e. Mnd ) ) |
| 93 | 81 92 | 3anbi12d | |- ( ph -> ( ( K e. Grp /\ ( mulGrp ` K ) e. Mnd /\ A. u e. ( Base ` L ) A. v e. ( Base ` L ) A. w e. ( Base ` L ) ( ( u ( .r ` L ) ( v ( +g ` L ) w ) ) = ( ( u ( .r ` L ) v ) ( +g ` L ) ( u ( .r ` L ) w ) ) /\ ( ( u ( +g ` L ) v ) ( .r ` L ) w ) = ( ( u ( .r ` L ) w ) ( +g ` L ) ( v ( .r ` L ) w ) ) ) ) <-> ( L e. Grp /\ ( mulGrp ` L ) e. Mnd /\ A. u e. ( Base ` L ) A. v e. ( Base ` L ) A. w e. ( Base ` L ) ( ( u ( .r ` L ) ( v ( +g ` L ) w ) ) = ( ( u ( .r ` L ) v ) ( +g ` L ) ( u ( .r ` L ) w ) ) /\ ( ( u ( +g ` L ) v ) ( .r ` L ) w ) = ( ( u ( .r ` L ) w ) ( +g ` L ) ( v ( .r ` L ) w ) ) ) ) ) ) |
| 94 | 80 93 | bitrd | |- ( ph -> ( ( K e. Grp /\ ( mulGrp ` K ) e. Mnd /\ A. u e. ( Base ` K ) A. v e. ( Base ` K ) A. w e. ( Base ` K ) ( ( u ( .r ` K ) ( v ( +g ` K ) w ) ) = ( ( u ( .r ` K ) v ) ( +g ` K ) ( u ( .r ` K ) w ) ) /\ ( ( u ( +g ` K ) v ) ( .r ` K ) w ) = ( ( u ( .r ` K ) w ) ( +g ` K ) ( v ( .r ` K ) w ) ) ) ) <-> ( L e. Grp /\ ( mulGrp ` L ) e. Mnd /\ A. u e. ( Base ` L ) A. v e. ( Base ` L ) A. w e. ( Base ` L ) ( ( u ( .r ` L ) ( v ( +g ` L ) w ) ) = ( ( u ( .r ` L ) v ) ( +g ` L ) ( u ( .r ` L ) w ) ) /\ ( ( u ( +g ` L ) v ) ( .r ` L ) w ) = ( ( u ( .r ` L ) w ) ( +g ` L ) ( v ( .r ` L ) w ) ) ) ) ) ) |
| 95 | 13 26 14 28 | isring | |- ( K e. Ring <-> ( K e. Grp /\ ( mulGrp ` K ) e. Mnd /\ A. u e. ( Base ` K ) A. v e. ( Base ` K ) A. w e. ( Base ` K ) ( ( u ( .r ` K ) ( v ( +g ` K ) w ) ) = ( ( u ( .r ` K ) v ) ( +g ` K ) ( u ( .r ` K ) w ) ) /\ ( ( u ( +g ` K ) v ) ( .r ` K ) w ) = ( ( u ( .r ` K ) w ) ( +g ` K ) ( v ( .r ` K ) w ) ) ) ) ) |
| 96 | eqid | |- ( +g ` L ) = ( +g ` L ) |
|
| 97 | 84 83 96 88 | isring | |- ( L e. Ring <-> ( L e. Grp /\ ( mulGrp ` L ) e. Mnd /\ A. u e. ( Base ` L ) A. v e. ( Base ` L ) A. w e. ( Base ` L ) ( ( u ( .r ` L ) ( v ( +g ` L ) w ) ) = ( ( u ( .r ` L ) v ) ( +g ` L ) ( u ( .r ` L ) w ) ) /\ ( ( u ( +g ` L ) v ) ( .r ` L ) w ) = ( ( u ( .r ` L ) w ) ( +g ` L ) ( v ( .r ` L ) w ) ) ) ) ) |
| 98 | 94 95 97 | 3bitr4g | |- ( ph -> ( K e. Ring <-> L e. Ring ) ) |