This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The scalar injection function in a subring algebra is the same up to a restriction to the subring. (Contributed by Mario Carneiro, 4-Jul-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | subrgascl.p | |- P = ( I mPoly R ) |
|
| subrgascl.a | |- A = ( algSc ` P ) |
||
| subrgascl.h | |- H = ( R |`s T ) |
||
| subrgascl.u | |- U = ( I mPoly H ) |
||
| subrgascl.i | |- ( ph -> I e. W ) |
||
| subrgascl.r | |- ( ph -> T e. ( SubRing ` R ) ) |
||
| subrgascl.c | |- C = ( algSc ` U ) |
||
| Assertion | subrgascl | |- ( ph -> C = ( A |` T ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subrgascl.p | |- P = ( I mPoly R ) |
|
| 2 | subrgascl.a | |- A = ( algSc ` P ) |
|
| 3 | subrgascl.h | |- H = ( R |`s T ) |
|
| 4 | subrgascl.u | |- U = ( I mPoly H ) |
|
| 5 | subrgascl.i | |- ( ph -> I e. W ) |
|
| 6 | subrgascl.r | |- ( ph -> T e. ( SubRing ` R ) ) |
|
| 7 | subrgascl.c | |- C = ( algSc ` U ) |
|
| 8 | eqid | |- ( Scalar ` U ) = ( Scalar ` U ) |
|
| 9 | eqid | |- ( Base ` ( Scalar ` U ) ) = ( Base ` ( Scalar ` U ) ) |
|
| 10 | 7 8 9 | asclfn | |- C Fn ( Base ` ( Scalar ` U ) ) |
| 11 | 3 | subrgbas | |- ( T e. ( SubRing ` R ) -> T = ( Base ` H ) ) |
| 12 | 6 11 | syl | |- ( ph -> T = ( Base ` H ) ) |
| 13 | 3 | ovexi | |- H e. _V |
| 14 | 13 | a1i | |- ( ph -> H e. _V ) |
| 15 | 4 5 14 | mplsca | |- ( ph -> H = ( Scalar ` U ) ) |
| 16 | 15 | fveq2d | |- ( ph -> ( Base ` H ) = ( Base ` ( Scalar ` U ) ) ) |
| 17 | 12 16 | eqtrd | |- ( ph -> T = ( Base ` ( Scalar ` U ) ) ) |
| 18 | 17 | fneq2d | |- ( ph -> ( C Fn T <-> C Fn ( Base ` ( Scalar ` U ) ) ) ) |
| 19 | 10 18 | mpbiri | |- ( ph -> C Fn T ) |
| 20 | eqid | |- ( Scalar ` P ) = ( Scalar ` P ) |
|
| 21 | eqid | |- ( Base ` ( Scalar ` P ) ) = ( Base ` ( Scalar ` P ) ) |
|
| 22 | 2 20 21 | asclfn | |- A Fn ( Base ` ( Scalar ` P ) ) |
| 23 | subrgrcl | |- ( T e. ( SubRing ` R ) -> R e. Ring ) |
|
| 24 | 6 23 | syl | |- ( ph -> R e. Ring ) |
| 25 | 1 5 24 | mplsca | |- ( ph -> R = ( Scalar ` P ) ) |
| 26 | 25 | fveq2d | |- ( ph -> ( Base ` R ) = ( Base ` ( Scalar ` P ) ) ) |
| 27 | 26 | fneq2d | |- ( ph -> ( A Fn ( Base ` R ) <-> A Fn ( Base ` ( Scalar ` P ) ) ) ) |
| 28 | 22 27 | mpbiri | |- ( ph -> A Fn ( Base ` R ) ) |
| 29 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 30 | 29 | subrgss | |- ( T e. ( SubRing ` R ) -> T C_ ( Base ` R ) ) |
| 31 | 6 30 | syl | |- ( ph -> T C_ ( Base ` R ) ) |
| 32 | fnssres | |- ( ( A Fn ( Base ` R ) /\ T C_ ( Base ` R ) ) -> ( A |` T ) Fn T ) |
|
| 33 | 28 31 32 | syl2anc | |- ( ph -> ( A |` T ) Fn T ) |
| 34 | fvres | |- ( x e. T -> ( ( A |` T ) ` x ) = ( A ` x ) ) |
|
| 35 | 34 | adantl | |- ( ( ph /\ x e. T ) -> ( ( A |` T ) ` x ) = ( A ` x ) ) |
| 36 | eqid | |- ( 0g ` R ) = ( 0g ` R ) |
|
| 37 | 3 36 | subrg0 | |- ( T e. ( SubRing ` R ) -> ( 0g ` R ) = ( 0g ` H ) ) |
| 38 | 6 37 | syl | |- ( ph -> ( 0g ` R ) = ( 0g ` H ) ) |
| 39 | 38 | ifeq2d | |- ( ph -> if ( y = ( I X. { 0 } ) , x , ( 0g ` R ) ) = if ( y = ( I X. { 0 } ) , x , ( 0g ` H ) ) ) |
| 40 | 39 | adantr | |- ( ( ph /\ x e. T ) -> if ( y = ( I X. { 0 } ) , x , ( 0g ` R ) ) = if ( y = ( I X. { 0 } ) , x , ( 0g ` H ) ) ) |
| 41 | 40 | mpteq2dv | |- ( ( ph /\ x e. T ) -> ( y e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |-> if ( y = ( I X. { 0 } ) , x , ( 0g ` R ) ) ) = ( y e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |-> if ( y = ( I X. { 0 } ) , x , ( 0g ` H ) ) ) ) |
| 42 | eqid | |- { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } = { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |
|
| 43 | 5 | adantr | |- ( ( ph /\ x e. T ) -> I e. W ) |
| 44 | 24 | adantr | |- ( ( ph /\ x e. T ) -> R e. Ring ) |
| 45 | 31 | sselda | |- ( ( ph /\ x e. T ) -> x e. ( Base ` R ) ) |
| 46 | 1 42 36 29 2 43 44 45 | mplascl | |- ( ( ph /\ x e. T ) -> ( A ` x ) = ( y e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |-> if ( y = ( I X. { 0 } ) , x , ( 0g ` R ) ) ) ) |
| 47 | eqid | |- ( 0g ` H ) = ( 0g ` H ) |
|
| 48 | eqid | |- ( Base ` H ) = ( Base ` H ) |
|
| 49 | 3 | subrgring | |- ( T e. ( SubRing ` R ) -> H e. Ring ) |
| 50 | 6 49 | syl | |- ( ph -> H e. Ring ) |
| 51 | 50 | adantr | |- ( ( ph /\ x e. T ) -> H e. Ring ) |
| 52 | 12 | eleq2d | |- ( ph -> ( x e. T <-> x e. ( Base ` H ) ) ) |
| 53 | 52 | biimpa | |- ( ( ph /\ x e. T ) -> x e. ( Base ` H ) ) |
| 54 | 4 42 47 48 7 43 51 53 | mplascl | |- ( ( ph /\ x e. T ) -> ( C ` x ) = ( y e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |-> if ( y = ( I X. { 0 } ) , x , ( 0g ` H ) ) ) ) |
| 55 | 41 46 54 | 3eqtr4d | |- ( ( ph /\ x e. T ) -> ( A ` x ) = ( C ` x ) ) |
| 56 | 35 55 | eqtr2d | |- ( ( ph /\ x e. T ) -> ( C ` x ) = ( ( A |` T ) ` x ) ) |
| 57 | 19 33 56 | eqfnfvd | |- ( ph -> C = ( A |` T ) ) |