This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of the group multiple (exponentiation) operation in a subgroup. (Contributed by Mario Carneiro, 13-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | subgmulgcl.t | |- .x. = ( .g ` G ) |
|
| Assertion | subgmulgcl | |- ( ( S e. ( SubGrp ` G ) /\ N e. ZZ /\ X e. S ) -> ( N .x. X ) e. S ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subgmulgcl.t | |- .x. = ( .g ` G ) |
|
| 2 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 3 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 4 | subgrcl | |- ( S e. ( SubGrp ` G ) -> G e. Grp ) |
|
| 5 | 2 | subgss | |- ( S e. ( SubGrp ` G ) -> S C_ ( Base ` G ) ) |
| 6 | 3 | subgcl | |- ( ( S e. ( SubGrp ` G ) /\ x e. S /\ y e. S ) -> ( x ( +g ` G ) y ) e. S ) |
| 7 | eqid | |- ( 0g ` G ) = ( 0g ` G ) |
|
| 8 | 7 | subg0cl | |- ( S e. ( SubGrp ` G ) -> ( 0g ` G ) e. S ) |
| 9 | eqid | |- ( invg ` G ) = ( invg ` G ) |
|
| 10 | 9 | subginvcl | |- ( ( S e. ( SubGrp ` G ) /\ x e. S ) -> ( ( invg ` G ) ` x ) e. S ) |
| 11 | 2 1 3 4 5 6 7 8 9 10 | mulgsubcl | |- ( ( S e. ( SubGrp ` G ) /\ N e. ZZ /\ X e. S ) -> ( N .x. X ) e. S ) |