This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Group multiple (exponentiation) operation at a positive integer. (Contributed by Mario Carneiro, 11-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mulgnn.b | |- B = ( Base ` G ) |
|
| mulgnn.p | |- .+ = ( +g ` G ) |
||
| mulgnn.t | |- .x. = ( .g ` G ) |
||
| mulgnn.s | |- S = seq 1 ( .+ , ( NN X. { X } ) ) |
||
| Assertion | mulgnn | |- ( ( N e. NN /\ X e. B ) -> ( N .x. X ) = ( S ` N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulgnn.b | |- B = ( Base ` G ) |
|
| 2 | mulgnn.p | |- .+ = ( +g ` G ) |
|
| 3 | mulgnn.t | |- .x. = ( .g ` G ) |
|
| 4 | mulgnn.s | |- S = seq 1 ( .+ , ( NN X. { X } ) ) |
|
| 5 | nnz | |- ( N e. NN -> N e. ZZ ) |
|
| 6 | eqid | |- ( 0g ` G ) = ( 0g ` G ) |
|
| 7 | eqid | |- ( invg ` G ) = ( invg ` G ) |
|
| 8 | 1 2 6 7 3 4 | mulgval | |- ( ( N e. ZZ /\ X e. B ) -> ( N .x. X ) = if ( N = 0 , ( 0g ` G ) , if ( 0 < N , ( S ` N ) , ( ( invg ` G ) ` ( S ` -u N ) ) ) ) ) |
| 9 | 5 8 | sylan | |- ( ( N e. NN /\ X e. B ) -> ( N .x. X ) = if ( N = 0 , ( 0g ` G ) , if ( 0 < N , ( S ` N ) , ( ( invg ` G ) ` ( S ` -u N ) ) ) ) ) |
| 10 | nnne0 | |- ( N e. NN -> N =/= 0 ) |
|
| 11 | 10 | neneqd | |- ( N e. NN -> -. N = 0 ) |
| 12 | 11 | iffalsed | |- ( N e. NN -> if ( N = 0 , ( 0g ` G ) , if ( 0 < N , ( S ` N ) , ( ( invg ` G ) ` ( S ` -u N ) ) ) ) = if ( 0 < N , ( S ` N ) , ( ( invg ` G ) ` ( S ` -u N ) ) ) ) |
| 13 | nngt0 | |- ( N e. NN -> 0 < N ) |
|
| 14 | 13 | iftrued | |- ( N e. NN -> if ( 0 < N , ( S ` N ) , ( ( invg ` G ) ` ( S ` -u N ) ) ) = ( S ` N ) ) |
| 15 | 12 14 | eqtrd | |- ( N e. NN -> if ( N = 0 , ( 0g ` G ) , if ( 0 < N , ( S ` N ) , ( ( invg ` G ) ` ( S ` -u N ) ) ) ) = ( S ` N ) ) |
| 16 | 15 | adantr | |- ( ( N e. NN /\ X e. B ) -> if ( N = 0 , ( 0g ` G ) , if ( 0 < N , ( S ` N ) , ( ( invg ` G ) ` ( S ` -u N ) ) ) ) = ( S ` N ) ) |
| 17 | 9 16 | eqtrd | |- ( ( N e. NN /\ X e. B ) -> ( N .x. X ) = ( S ` N ) ) |