This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the group multiple (exponentiation) operation. (Contributed by Mario Carneiro, 11-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mulgval.b | |- B = ( Base ` G ) |
|
| mulgval.p | |- .+ = ( +g ` G ) |
||
| mulgval.o | |- .0. = ( 0g ` G ) |
||
| mulgval.i | |- I = ( invg ` G ) |
||
| mulgval.t | |- .x. = ( .g ` G ) |
||
| mulgval.s | |- S = seq 1 ( .+ , ( NN X. { X } ) ) |
||
| Assertion | mulgval | |- ( ( N e. ZZ /\ X e. B ) -> ( N .x. X ) = if ( N = 0 , .0. , if ( 0 < N , ( S ` N ) , ( I ` ( S ` -u N ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulgval.b | |- B = ( Base ` G ) |
|
| 2 | mulgval.p | |- .+ = ( +g ` G ) |
|
| 3 | mulgval.o | |- .0. = ( 0g ` G ) |
|
| 4 | mulgval.i | |- I = ( invg ` G ) |
|
| 5 | mulgval.t | |- .x. = ( .g ` G ) |
|
| 6 | mulgval.s | |- S = seq 1 ( .+ , ( NN X. { X } ) ) |
|
| 7 | simpl | |- ( ( n = N /\ x = X ) -> n = N ) |
|
| 8 | 7 | eqeq1d | |- ( ( n = N /\ x = X ) -> ( n = 0 <-> N = 0 ) ) |
| 9 | 7 | breq2d | |- ( ( n = N /\ x = X ) -> ( 0 < n <-> 0 < N ) ) |
| 10 | simpr | |- ( ( n = N /\ x = X ) -> x = X ) |
|
| 11 | 10 | sneqd | |- ( ( n = N /\ x = X ) -> { x } = { X } ) |
| 12 | 11 | xpeq2d | |- ( ( n = N /\ x = X ) -> ( NN X. { x } ) = ( NN X. { X } ) ) |
| 13 | 12 | seqeq3d | |- ( ( n = N /\ x = X ) -> seq 1 ( .+ , ( NN X. { x } ) ) = seq 1 ( .+ , ( NN X. { X } ) ) ) |
| 14 | 13 6 | eqtr4di | |- ( ( n = N /\ x = X ) -> seq 1 ( .+ , ( NN X. { x } ) ) = S ) |
| 15 | 14 7 | fveq12d | |- ( ( n = N /\ x = X ) -> ( seq 1 ( .+ , ( NN X. { x } ) ) ` n ) = ( S ` N ) ) |
| 16 | 7 | negeqd | |- ( ( n = N /\ x = X ) -> -u n = -u N ) |
| 17 | 14 16 | fveq12d | |- ( ( n = N /\ x = X ) -> ( seq 1 ( .+ , ( NN X. { x } ) ) ` -u n ) = ( S ` -u N ) ) |
| 18 | 17 | fveq2d | |- ( ( n = N /\ x = X ) -> ( I ` ( seq 1 ( .+ , ( NN X. { x } ) ) ` -u n ) ) = ( I ` ( S ` -u N ) ) ) |
| 19 | 9 15 18 | ifbieq12d | |- ( ( n = N /\ x = X ) -> if ( 0 < n , ( seq 1 ( .+ , ( NN X. { x } ) ) ` n ) , ( I ` ( seq 1 ( .+ , ( NN X. { x } ) ) ` -u n ) ) ) = if ( 0 < N , ( S ` N ) , ( I ` ( S ` -u N ) ) ) ) |
| 20 | 8 19 | ifbieq2d | |- ( ( n = N /\ x = X ) -> if ( n = 0 , .0. , if ( 0 < n , ( seq 1 ( .+ , ( NN X. { x } ) ) ` n ) , ( I ` ( seq 1 ( .+ , ( NN X. { x } ) ) ` -u n ) ) ) ) = if ( N = 0 , .0. , if ( 0 < N , ( S ` N ) , ( I ` ( S ` -u N ) ) ) ) ) |
| 21 | 1 2 3 4 5 | mulgfval | |- .x. = ( n e. ZZ , x e. B |-> if ( n = 0 , .0. , if ( 0 < n , ( seq 1 ( .+ , ( NN X. { x } ) ) ` n ) , ( I ` ( seq 1 ( .+ , ( NN X. { x } ) ) ` -u n ) ) ) ) ) |
| 22 | 3 | fvexi | |- .0. e. _V |
| 23 | fvex | |- ( S ` N ) e. _V |
|
| 24 | fvex | |- ( I ` ( S ` -u N ) ) e. _V |
|
| 25 | 23 24 | ifex | |- if ( 0 < N , ( S ` N ) , ( I ` ( S ` -u N ) ) ) e. _V |
| 26 | 22 25 | ifex | |- if ( N = 0 , .0. , if ( 0 < N , ( S ` N ) , ( I ` ( S ` -u N ) ) ) ) e. _V |
| 27 | 20 21 26 | ovmpoa | |- ( ( N e. ZZ /\ X e. B ) -> ( N .x. X ) = if ( N = 0 , .0. , if ( 0 < N , ( S ` N ) , ( I ` ( S ` -u N ) ) ) ) ) |