This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordering on reals satisfies strict trichotomy. Axiom 18 of 22 for real and complex numbers, derived from ZF set theory. (This restates ax-pre-lttri with ordering on the extended reals.) (Contributed by NM, 13-Oct-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | axlttri | |- ( ( A e. RR /\ B e. RR ) -> ( A < B <-> -. ( A = B \/ B < A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-pre-lttri | |- ( ( A e. RR /\ B e. RR ) -> ( A |
|
| 2 | ltxrlt | |- ( ( A e. RR /\ B e. RR ) -> ( A < B <-> A |
|
| 3 | ltxrlt | |- ( ( B e. RR /\ A e. RR ) -> ( B < A <-> B |
|
| 4 | 3 | ancoms | |- ( ( A e. RR /\ B e. RR ) -> ( B < A <-> B |
| 5 | 4 | orbi2d | |- ( ( A e. RR /\ B e. RR ) -> ( ( A = B \/ B < A ) <-> ( A = B \/ B |
| 6 | 5 | notbid | |- ( ( A e. RR /\ B e. RR ) -> ( -. ( A = B \/ B < A ) <-> -. ( A = B \/ B |
| 7 | 1 2 6 | 3bitr4d | |- ( ( A e. RR /\ B e. RR ) -> ( A < B <-> -. ( A = B \/ B < A ) ) ) |