This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The limit of an infinite series of nonnegative reals is nonnegative. (Contributed by Paul Chapman, 9-Feb-2008) (Revised by Mario Carneiro, 3-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | clim2ser.1 | |- Z = ( ZZ>= ` M ) |
|
| iserge0.2 | |- ( ph -> M e. ZZ ) |
||
| iserge0.3 | |- ( ph -> seq M ( + , F ) ~~> A ) |
||
| iserge0.4 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) e. RR ) |
||
| iserge0.5 | |- ( ( ph /\ k e. Z ) -> 0 <_ ( F ` k ) ) |
||
| Assertion | iserge0 | |- ( ph -> 0 <_ A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clim2ser.1 | |- Z = ( ZZ>= ` M ) |
|
| 2 | iserge0.2 | |- ( ph -> M e. ZZ ) |
|
| 3 | iserge0.3 | |- ( ph -> seq M ( + , F ) ~~> A ) |
|
| 4 | iserge0.4 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) e. RR ) |
|
| 5 | iserge0.5 | |- ( ( ph /\ k e. Z ) -> 0 <_ ( F ` k ) ) |
|
| 6 | serclim0 | |- ( M e. ZZ -> seq M ( + , ( ( ZZ>= ` M ) X. { 0 } ) ) ~~> 0 ) |
|
| 7 | 2 6 | syl | |- ( ph -> seq M ( + , ( ( ZZ>= ` M ) X. { 0 } ) ) ~~> 0 ) |
| 8 | simpr | |- ( ( ph /\ k e. Z ) -> k e. Z ) |
|
| 9 | 8 1 | eleqtrdi | |- ( ( ph /\ k e. Z ) -> k e. ( ZZ>= ` M ) ) |
| 10 | c0ex | |- 0 e. _V |
|
| 11 | 10 | fvconst2 | |- ( k e. ( ZZ>= ` M ) -> ( ( ( ZZ>= ` M ) X. { 0 } ) ` k ) = 0 ) |
| 12 | 9 11 | syl | |- ( ( ph /\ k e. Z ) -> ( ( ( ZZ>= ` M ) X. { 0 } ) ` k ) = 0 ) |
| 13 | 0re | |- 0 e. RR |
|
| 14 | 12 13 | eqeltrdi | |- ( ( ph /\ k e. Z ) -> ( ( ( ZZ>= ` M ) X. { 0 } ) ` k ) e. RR ) |
| 15 | 12 5 | eqbrtrd | |- ( ( ph /\ k e. Z ) -> ( ( ( ZZ>= ` M ) X. { 0 } ) ` k ) <_ ( F ` k ) ) |
| 16 | 1 2 7 3 14 4 15 | iserle | |- ( ph -> 0 <_ A ) |