This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Property deduction for a normed group. (Contributed by Mario Carneiro, 4-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ngppropd.1 | |- ( ph -> B = ( Base ` K ) ) |
|
| ngppropd.2 | |- ( ph -> B = ( Base ` L ) ) |
||
| ngppropd.3 | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( +g ` K ) y ) = ( x ( +g ` L ) y ) ) |
||
| ngppropd.4 | |- ( ph -> ( ( dist ` K ) |` ( B X. B ) ) = ( ( dist ` L ) |` ( B X. B ) ) ) |
||
| ngppropd.5 | |- ( ph -> ( TopOpen ` K ) = ( TopOpen ` L ) ) |
||
| Assertion | ngppropd | |- ( ph -> ( K e. NrmGrp <-> L e. NrmGrp ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ngppropd.1 | |- ( ph -> B = ( Base ` K ) ) |
|
| 2 | ngppropd.2 | |- ( ph -> B = ( Base ` L ) ) |
|
| 3 | ngppropd.3 | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( +g ` K ) y ) = ( x ( +g ` L ) y ) ) |
|
| 4 | ngppropd.4 | |- ( ph -> ( ( dist ` K ) |` ( B X. B ) ) = ( ( dist ` L ) |` ( B X. B ) ) ) |
|
| 5 | ngppropd.5 | |- ( ph -> ( TopOpen ` K ) = ( TopOpen ` L ) ) |
|
| 6 | 1 2 4 5 | mspropd | |- ( ph -> ( K e. MetSp <-> L e. MetSp ) ) |
| 7 | 6 | adantr | |- ( ( ph /\ K e. Grp ) -> ( K e. MetSp <-> L e. MetSp ) ) |
| 8 | 1 | adantr | |- ( ( ph /\ K e. Grp ) -> B = ( Base ` K ) ) |
| 9 | 2 | adantr | |- ( ( ph /\ K e. Grp ) -> B = ( Base ` L ) ) |
| 10 | simpr | |- ( ( ph /\ K e. Grp ) -> K e. Grp ) |
|
| 11 | 3 | adantlr | |- ( ( ( ph /\ K e. Grp ) /\ ( x e. B /\ y e. B ) ) -> ( x ( +g ` K ) y ) = ( x ( +g ` L ) y ) ) |
| 12 | 4 | adantr | |- ( ( ph /\ K e. Grp ) -> ( ( dist ` K ) |` ( B X. B ) ) = ( ( dist ` L ) |` ( B X. B ) ) ) |
| 13 | 8 9 10 11 12 | nmpropd2 | |- ( ( ph /\ K e. Grp ) -> ( norm ` K ) = ( norm ` L ) ) |
| 14 | 8 9 10 11 | grpsubpropd2 | |- ( ( ph /\ K e. Grp ) -> ( -g ` K ) = ( -g ` L ) ) |
| 15 | 13 14 | coeq12d | |- ( ( ph /\ K e. Grp ) -> ( ( norm ` K ) o. ( -g ` K ) ) = ( ( norm ` L ) o. ( -g ` L ) ) ) |
| 16 | 1 | sqxpeqd | |- ( ph -> ( B X. B ) = ( ( Base ` K ) X. ( Base ` K ) ) ) |
| 17 | 16 | reseq2d | |- ( ph -> ( ( dist ` K ) |` ( B X. B ) ) = ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) ) |
| 18 | 2 | sqxpeqd | |- ( ph -> ( B X. B ) = ( ( Base ` L ) X. ( Base ` L ) ) ) |
| 19 | 18 | reseq2d | |- ( ph -> ( ( dist ` L ) |` ( B X. B ) ) = ( ( dist ` L ) |` ( ( Base ` L ) X. ( Base ` L ) ) ) ) |
| 20 | 4 17 19 | 3eqtr3d | |- ( ph -> ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) = ( ( dist ` L ) |` ( ( Base ` L ) X. ( Base ` L ) ) ) ) |
| 21 | 20 | adantr | |- ( ( ph /\ K e. Grp ) -> ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) = ( ( dist ` L ) |` ( ( Base ` L ) X. ( Base ` L ) ) ) ) |
| 22 | 15 21 | eqeq12d | |- ( ( ph /\ K e. Grp ) -> ( ( ( norm ` K ) o. ( -g ` K ) ) = ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) <-> ( ( norm ` L ) o. ( -g ` L ) ) = ( ( dist ` L ) |` ( ( Base ` L ) X. ( Base ` L ) ) ) ) ) |
| 23 | 7 22 | anbi12d | |- ( ( ph /\ K e. Grp ) -> ( ( K e. MetSp /\ ( ( norm ` K ) o. ( -g ` K ) ) = ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) ) <-> ( L e. MetSp /\ ( ( norm ` L ) o. ( -g ` L ) ) = ( ( dist ` L ) |` ( ( Base ` L ) X. ( Base ` L ) ) ) ) ) ) |
| 24 | 23 | pm5.32da | |- ( ph -> ( ( K e. Grp /\ ( K e. MetSp /\ ( ( norm ` K ) o. ( -g ` K ) ) = ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) ) ) <-> ( K e. Grp /\ ( L e. MetSp /\ ( ( norm ` L ) o. ( -g ` L ) ) = ( ( dist ` L ) |` ( ( Base ` L ) X. ( Base ` L ) ) ) ) ) ) ) |
| 25 | 1 2 3 | grppropd | |- ( ph -> ( K e. Grp <-> L e. Grp ) ) |
| 26 | 25 | anbi1d | |- ( ph -> ( ( K e. Grp /\ ( L e. MetSp /\ ( ( norm ` L ) o. ( -g ` L ) ) = ( ( dist ` L ) |` ( ( Base ` L ) X. ( Base ` L ) ) ) ) ) <-> ( L e. Grp /\ ( L e. MetSp /\ ( ( norm ` L ) o. ( -g ` L ) ) = ( ( dist ` L ) |` ( ( Base ` L ) X. ( Base ` L ) ) ) ) ) ) ) |
| 27 | 24 26 | bitrd | |- ( ph -> ( ( K e. Grp /\ ( K e. MetSp /\ ( ( norm ` K ) o. ( -g ` K ) ) = ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) ) ) <-> ( L e. Grp /\ ( L e. MetSp /\ ( ( norm ` L ) o. ( -g ` L ) ) = ( ( dist ` L ) |` ( ( Base ` L ) X. ( Base ` L ) ) ) ) ) ) ) |
| 28 | 3anass | |- ( ( K e. Grp /\ K e. MetSp /\ ( ( norm ` K ) o. ( -g ` K ) ) = ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) ) <-> ( K e. Grp /\ ( K e. MetSp /\ ( ( norm ` K ) o. ( -g ` K ) ) = ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) ) ) ) |
|
| 29 | 3anass | |- ( ( L e. Grp /\ L e. MetSp /\ ( ( norm ` L ) o. ( -g ` L ) ) = ( ( dist ` L ) |` ( ( Base ` L ) X. ( Base ` L ) ) ) ) <-> ( L e. Grp /\ ( L e. MetSp /\ ( ( norm ` L ) o. ( -g ` L ) ) = ( ( dist ` L ) |` ( ( Base ` L ) X. ( Base ` L ) ) ) ) ) ) |
|
| 30 | 27 28 29 | 3bitr4g | |- ( ph -> ( ( K e. Grp /\ K e. MetSp /\ ( ( norm ` K ) o. ( -g ` K ) ) = ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) ) <-> ( L e. Grp /\ L e. MetSp /\ ( ( norm ` L ) o. ( -g ` L ) ) = ( ( dist ` L ) |` ( ( Base ` L ) X. ( Base ` L ) ) ) ) ) ) |
| 31 | eqid | |- ( norm ` K ) = ( norm ` K ) |
|
| 32 | eqid | |- ( -g ` K ) = ( -g ` K ) |
|
| 33 | eqid | |- ( dist ` K ) = ( dist ` K ) |
|
| 34 | eqid | |- ( Base ` K ) = ( Base ` K ) |
|
| 35 | eqid | |- ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) = ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) |
|
| 36 | 31 32 33 34 35 | isngp2 | |- ( K e. NrmGrp <-> ( K e. Grp /\ K e. MetSp /\ ( ( norm ` K ) o. ( -g ` K ) ) = ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) ) ) |
| 37 | eqid | |- ( norm ` L ) = ( norm ` L ) |
|
| 38 | eqid | |- ( -g ` L ) = ( -g ` L ) |
|
| 39 | eqid | |- ( dist ` L ) = ( dist ` L ) |
|
| 40 | eqid | |- ( Base ` L ) = ( Base ` L ) |
|
| 41 | eqid | |- ( ( dist ` L ) |` ( ( Base ` L ) X. ( Base ` L ) ) ) = ( ( dist ` L ) |` ( ( Base ` L ) X. ( Base ` L ) ) ) |
|
| 42 | 37 38 39 40 41 | isngp2 | |- ( L e. NrmGrp <-> ( L e. Grp /\ L e. MetSp /\ ( ( norm ` L ) o. ( -g ` L ) ) = ( ( dist ` L ) |` ( ( Base ` L ) X. ( Base ` L ) ) ) ) ) |
| 43 | 30 36 42 | 3bitr4g | |- ( ph -> ( K e. NrmGrp <-> L e. NrmGrp ) ) |