This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The subring algebra over a commutative ring is an associative algebra. (Contributed by Mario Carneiro, 6-Oct-2015) (Proof shortened by SN, 21-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | sraassa.a | |- A = ( ( subringAlg ` W ) ` S ) |
|
| Assertion | sraassa | |- ( ( W e. CRing /\ S e. ( SubRing ` W ) ) -> A e. AssAlg ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sraassa.a | |- A = ( ( subringAlg ` W ) ` S ) |
|
| 2 | eqid | |- ( Base ` W ) = ( Base ` W ) |
|
| 3 | 2 | subrgss | |- ( S e. ( SubRing ` W ) -> S C_ ( Base ` W ) ) |
| 4 | 3 | adantl | |- ( ( W e. CRing /\ S e. ( SubRing ` W ) ) -> S C_ ( Base ` W ) ) |
| 5 | eqid | |- ( Cntr ` ( mulGrp ` W ) ) = ( Cntr ` ( mulGrp ` W ) ) |
|
| 6 | 2 5 | crngbascntr | |- ( W e. CRing -> ( Base ` W ) = ( Cntr ` ( mulGrp ` W ) ) ) |
| 7 | 6 | adantr | |- ( ( W e. CRing /\ S e. ( SubRing ` W ) ) -> ( Base ` W ) = ( Cntr ` ( mulGrp ` W ) ) ) |
| 8 | 4 7 | sseqtrd | |- ( ( W e. CRing /\ S e. ( SubRing ` W ) ) -> S C_ ( Cntr ` ( mulGrp ` W ) ) ) |
| 9 | crngring | |- ( W e. CRing -> W e. Ring ) |
|
| 10 | 9 | adantr | |- ( ( W e. CRing /\ S e. ( SubRing ` W ) ) -> W e. Ring ) |
| 11 | simpr | |- ( ( W e. CRing /\ S e. ( SubRing ` W ) ) -> S e. ( SubRing ` W ) ) |
|
| 12 | 1 5 10 11 | sraassab | |- ( ( W e. CRing /\ S e. ( SubRing ` W ) ) -> ( A e. AssAlg <-> S C_ ( Cntr ` ( mulGrp ` W ) ) ) ) |
| 13 | 8 12 | mpbird | |- ( ( W e. CRing /\ S e. ( SubRing ` W ) ) -> A e. AssAlg ) |