This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Elementhood in the center of a magma. (Contributed by SN, 21-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | elcntr.b | |- B = ( Base ` M ) |
|
| elcntr.p | |- .+ = ( +g ` M ) |
||
| elcntr.z | |- Z = ( Cntr ` M ) |
||
| Assertion | elcntr | |- ( A e. Z <-> ( A e. B /\ A. y e. B ( A .+ y ) = ( y .+ A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elcntr.b | |- B = ( Base ` M ) |
|
| 2 | elcntr.p | |- .+ = ( +g ` M ) |
|
| 3 | elcntr.z | |- Z = ( Cntr ` M ) |
|
| 4 | eqid | |- ( Cntz ` M ) = ( Cntz ` M ) |
|
| 5 | 1 4 | cntrval | |- ( ( Cntz ` M ) ` B ) = ( Cntr ` M ) |
| 6 | 3 5 | eqtr4i | |- Z = ( ( Cntz ` M ) ` B ) |
| 7 | 6 | eleq2i | |- ( A e. Z <-> A e. ( ( Cntz ` M ) ` B ) ) |
| 8 | ssid | |- B C_ B |
|
| 9 | 1 2 4 | elcntz | |- ( B C_ B -> ( A e. ( ( Cntz ` M ) ` B ) <-> ( A e. B /\ A. y e. B ( A .+ y ) = ( y .+ A ) ) ) ) |
| 10 | 8 9 | ax-mp | |- ( A e. ( ( Cntz ` M ) ` B ) <-> ( A e. B /\ A. y e. B ( A .+ y ) = ( y .+ A ) ) ) |
| 11 | 7 10 | bitri | |- ( A e. Z <-> ( A e. B /\ A. y e. B ( A .+ y ) = ( y .+ A ) ) ) |