This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Condition for a subring algebra to be a ring. (Contributed by Thierry Arnoux, 24-Jul-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sraring.1 | |- A = ( ( subringAlg ` R ) ` V ) |
|
| sraring.2 | |- B = ( Base ` R ) |
||
| Assertion | sraring | |- ( ( R e. Ring /\ V C_ B ) -> A e. Ring ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sraring.1 | |- A = ( ( subringAlg ` R ) ` V ) |
|
| 2 | sraring.2 | |- B = ( Base ` R ) |
|
| 3 | 2 | a1i | |- ( V C_ B -> B = ( Base ` R ) ) |
| 4 | 1 | a1i | |- ( V C_ B -> A = ( ( subringAlg ` R ) ` V ) ) |
| 5 | id | |- ( V C_ B -> V C_ B ) |
|
| 6 | 5 2 | sseqtrdi | |- ( V C_ B -> V C_ ( Base ` R ) ) |
| 7 | 4 6 | srabase | |- ( V C_ B -> ( Base ` R ) = ( Base ` A ) ) |
| 8 | 2 7 | eqtrid | |- ( V C_ B -> B = ( Base ` A ) ) |
| 9 | 4 6 | sraaddg | |- ( V C_ B -> ( +g ` R ) = ( +g ` A ) ) |
| 10 | 9 | oveqdr | |- ( ( V C_ B /\ ( x e. B /\ y e. B ) ) -> ( x ( +g ` R ) y ) = ( x ( +g ` A ) y ) ) |
| 11 | 4 6 | sramulr | |- ( V C_ B -> ( .r ` R ) = ( .r ` A ) ) |
| 12 | 11 | oveqdr | |- ( ( V C_ B /\ ( x e. B /\ y e. B ) ) -> ( x ( .r ` R ) y ) = ( x ( .r ` A ) y ) ) |
| 13 | 3 8 10 12 | ringpropd | |- ( V C_ B -> ( R e. Ring <-> A e. Ring ) ) |
| 14 | 13 | biimpac | |- ( ( R e. Ring /\ V C_ B ) -> A e. Ring ) |