This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Sufficient condition for being an associative algebra. (Contributed by Mario Carneiro, 5-Dec-2014) (Revised by SN, 2-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isassad.v | |- ( ph -> V = ( Base ` W ) ) |
|
| isassad.f | |- ( ph -> F = ( Scalar ` W ) ) |
||
| isassad.b | |- ( ph -> B = ( Base ` F ) ) |
||
| isassad.s | |- ( ph -> .x. = ( .s ` W ) ) |
||
| isassad.t | |- ( ph -> .X. = ( .r ` W ) ) |
||
| isassad.1 | |- ( ph -> W e. LMod ) |
||
| isassad.2 | |- ( ph -> W e. Ring ) |
||
| isassad.4 | |- ( ( ph /\ ( r e. B /\ x e. V /\ y e. V ) ) -> ( ( r .x. x ) .X. y ) = ( r .x. ( x .X. y ) ) ) |
||
| isassad.5 | |- ( ( ph /\ ( r e. B /\ x e. V /\ y e. V ) ) -> ( x .X. ( r .x. y ) ) = ( r .x. ( x .X. y ) ) ) |
||
| Assertion | isassad | |- ( ph -> W e. AssAlg ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isassad.v | |- ( ph -> V = ( Base ` W ) ) |
|
| 2 | isassad.f | |- ( ph -> F = ( Scalar ` W ) ) |
|
| 3 | isassad.b | |- ( ph -> B = ( Base ` F ) ) |
|
| 4 | isassad.s | |- ( ph -> .x. = ( .s ` W ) ) |
|
| 5 | isassad.t | |- ( ph -> .X. = ( .r ` W ) ) |
|
| 6 | isassad.1 | |- ( ph -> W e. LMod ) |
|
| 7 | isassad.2 | |- ( ph -> W e. Ring ) |
|
| 8 | isassad.4 | |- ( ( ph /\ ( r e. B /\ x e. V /\ y e. V ) ) -> ( ( r .x. x ) .X. y ) = ( r .x. ( x .X. y ) ) ) |
|
| 9 | isassad.5 | |- ( ( ph /\ ( r e. B /\ x e. V /\ y e. V ) ) -> ( x .X. ( r .x. y ) ) = ( r .x. ( x .X. y ) ) ) |
|
| 10 | 6 7 | jca | |- ( ph -> ( W e. LMod /\ W e. Ring ) ) |
| 11 | 8 9 | jca | |- ( ( ph /\ ( r e. B /\ x e. V /\ y e. V ) ) -> ( ( ( r .x. x ) .X. y ) = ( r .x. ( x .X. y ) ) /\ ( x .X. ( r .x. y ) ) = ( r .x. ( x .X. y ) ) ) ) |
| 12 | 11 | ralrimivvva | |- ( ph -> A. r e. B A. x e. V A. y e. V ( ( ( r .x. x ) .X. y ) = ( r .x. ( x .X. y ) ) /\ ( x .X. ( r .x. y ) ) = ( r .x. ( x .X. y ) ) ) ) |
| 13 | 2 | fveq2d | |- ( ph -> ( Base ` F ) = ( Base ` ( Scalar ` W ) ) ) |
| 14 | 3 13 | eqtrd | |- ( ph -> B = ( Base ` ( Scalar ` W ) ) ) |
| 15 | 4 | oveqd | |- ( ph -> ( r .x. x ) = ( r ( .s ` W ) x ) ) |
| 16 | eqidd | |- ( ph -> y = y ) |
|
| 17 | 5 15 16 | oveq123d | |- ( ph -> ( ( r .x. x ) .X. y ) = ( ( r ( .s ` W ) x ) ( .r ` W ) y ) ) |
| 18 | eqidd | |- ( ph -> r = r ) |
|
| 19 | 5 | oveqd | |- ( ph -> ( x .X. y ) = ( x ( .r ` W ) y ) ) |
| 20 | 4 18 19 | oveq123d | |- ( ph -> ( r .x. ( x .X. y ) ) = ( r ( .s ` W ) ( x ( .r ` W ) y ) ) ) |
| 21 | 17 20 | eqeq12d | |- ( ph -> ( ( ( r .x. x ) .X. y ) = ( r .x. ( x .X. y ) ) <-> ( ( r ( .s ` W ) x ) ( .r ` W ) y ) = ( r ( .s ` W ) ( x ( .r ` W ) y ) ) ) ) |
| 22 | eqidd | |- ( ph -> x = x ) |
|
| 23 | 4 | oveqd | |- ( ph -> ( r .x. y ) = ( r ( .s ` W ) y ) ) |
| 24 | 5 22 23 | oveq123d | |- ( ph -> ( x .X. ( r .x. y ) ) = ( x ( .r ` W ) ( r ( .s ` W ) y ) ) ) |
| 25 | 24 20 | eqeq12d | |- ( ph -> ( ( x .X. ( r .x. y ) ) = ( r .x. ( x .X. y ) ) <-> ( x ( .r ` W ) ( r ( .s ` W ) y ) ) = ( r ( .s ` W ) ( x ( .r ` W ) y ) ) ) ) |
| 26 | 21 25 | anbi12d | |- ( ph -> ( ( ( ( r .x. x ) .X. y ) = ( r .x. ( x .X. y ) ) /\ ( x .X. ( r .x. y ) ) = ( r .x. ( x .X. y ) ) ) <-> ( ( ( r ( .s ` W ) x ) ( .r ` W ) y ) = ( r ( .s ` W ) ( x ( .r ` W ) y ) ) /\ ( x ( .r ` W ) ( r ( .s ` W ) y ) ) = ( r ( .s ` W ) ( x ( .r ` W ) y ) ) ) ) ) |
| 27 | 1 26 | raleqbidv | |- ( ph -> ( A. y e. V ( ( ( r .x. x ) .X. y ) = ( r .x. ( x .X. y ) ) /\ ( x .X. ( r .x. y ) ) = ( r .x. ( x .X. y ) ) ) <-> A. y e. ( Base ` W ) ( ( ( r ( .s ` W ) x ) ( .r ` W ) y ) = ( r ( .s ` W ) ( x ( .r ` W ) y ) ) /\ ( x ( .r ` W ) ( r ( .s ` W ) y ) ) = ( r ( .s ` W ) ( x ( .r ` W ) y ) ) ) ) ) |
| 28 | 1 27 | raleqbidv | |- ( ph -> ( A. x e. V A. y e. V ( ( ( r .x. x ) .X. y ) = ( r .x. ( x .X. y ) ) /\ ( x .X. ( r .x. y ) ) = ( r .x. ( x .X. y ) ) ) <-> A. x e. ( Base ` W ) A. y e. ( Base ` W ) ( ( ( r ( .s ` W ) x ) ( .r ` W ) y ) = ( r ( .s ` W ) ( x ( .r ` W ) y ) ) /\ ( x ( .r ` W ) ( r ( .s ` W ) y ) ) = ( r ( .s ` W ) ( x ( .r ` W ) y ) ) ) ) ) |
| 29 | 14 28 | raleqbidv | |- ( ph -> ( A. r e. B A. x e. V A. y e. V ( ( ( r .x. x ) .X. y ) = ( r .x. ( x .X. y ) ) /\ ( x .X. ( r .x. y ) ) = ( r .x. ( x .X. y ) ) ) <-> A. r e. ( Base ` ( Scalar ` W ) ) A. x e. ( Base ` W ) A. y e. ( Base ` W ) ( ( ( r ( .s ` W ) x ) ( .r ` W ) y ) = ( r ( .s ` W ) ( x ( .r ` W ) y ) ) /\ ( x ( .r ` W ) ( r ( .s ` W ) y ) ) = ( r ( .s ` W ) ( x ( .r ` W ) y ) ) ) ) ) |
| 30 | 12 29 | mpbid | |- ( ph -> A. r e. ( Base ` ( Scalar ` W ) ) A. x e. ( Base ` W ) A. y e. ( Base ` W ) ( ( ( r ( .s ` W ) x ) ( .r ` W ) y ) = ( r ( .s ` W ) ( x ( .r ` W ) y ) ) /\ ( x ( .r ` W ) ( r ( .s ` W ) y ) ) = ( r ( .s ` W ) ( x ( .r ` W ) y ) ) ) ) |
| 31 | eqid | |- ( Base ` W ) = ( Base ` W ) |
|
| 32 | eqid | |- ( Scalar ` W ) = ( Scalar ` W ) |
|
| 33 | eqid | |- ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) |
|
| 34 | eqid | |- ( .s ` W ) = ( .s ` W ) |
|
| 35 | eqid | |- ( .r ` W ) = ( .r ` W ) |
|
| 36 | 31 32 33 34 35 | isassa | |- ( W e. AssAlg <-> ( ( W e. LMod /\ W e. Ring ) /\ A. r e. ( Base ` ( Scalar ` W ) ) A. x e. ( Base ` W ) A. y e. ( Base ` W ) ( ( ( r ( .s ` W ) x ) ( .r ` W ) y ) = ( r ( .s ` W ) ( x ( .r ` W ) y ) ) /\ ( x ( .r ` W ) ( r ( .s ` W ) y ) ) = ( r ( .s ` W ) ( x ( .r ` W ) y ) ) ) ) ) |
| 37 | 10 30 36 | sylanbrc | |- ( ph -> W e. AssAlg ) |