This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The square of a reciprocal is the reciprocal of the square. (Contributed by NM, 17-Sep-1999)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sqval.1 | |- A e. CC |
|
| sqreci.1 | |- A =/= 0 |
||
| Assertion | sqrecii | |- ( ( 1 / A ) ^ 2 ) = ( 1 / ( A ^ 2 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sqval.1 | |- A e. CC |
|
| 2 | sqreci.1 | |- A =/= 0 |
|
| 3 | ax-1cn | |- 1 e. CC |
|
| 4 | 3 1 3 1 2 2 | divmuldivi | |- ( ( 1 / A ) x. ( 1 / A ) ) = ( ( 1 x. 1 ) / ( A x. A ) ) |
| 5 | 1t1e1 | |- ( 1 x. 1 ) = 1 |
|
| 6 | 5 | oveq1i | |- ( ( 1 x. 1 ) / ( A x. A ) ) = ( 1 / ( A x. A ) ) |
| 7 | 4 6 | eqtri | |- ( ( 1 / A ) x. ( 1 / A ) ) = ( 1 / ( A x. A ) ) |
| 8 | 1 2 | reccli | |- ( 1 / A ) e. CC |
| 9 | 8 | sqvali | |- ( ( 1 / A ) ^ 2 ) = ( ( 1 / A ) x. ( 1 / A ) ) |
| 10 | 1 | sqvali | |- ( A ^ 2 ) = ( A x. A ) |
| 11 | 10 | oveq2i | |- ( 1 / ( A ^ 2 ) ) = ( 1 / ( A x. A ) ) |
| 12 | 7 9 11 | 3eqtr4i | |- ( ( 1 / A ) ^ 2 ) = ( 1 / ( A ^ 2 ) ) |