This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Complementarity of the sine and cosine functions in the first quadrant. (Contributed by Paul Chapman, 25-Jan-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sincosq1eq | |- ( ( A e. CC /\ B e. CC /\ ( A + B ) = 1 ) -> ( sin ` ( A x. ( _pi / 2 ) ) ) = ( cos ` ( B x. ( _pi / 2 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | picn | |- _pi e. CC |
|
| 2 | 2cn | |- 2 e. CC |
|
| 3 | 2ne0 | |- 2 =/= 0 |
|
| 4 | 1 2 3 | divcli | |- ( _pi / 2 ) e. CC |
| 5 | mulcl | |- ( ( A e. CC /\ ( _pi / 2 ) e. CC ) -> ( A x. ( _pi / 2 ) ) e. CC ) |
|
| 6 | 4 5 | mpan2 | |- ( A e. CC -> ( A x. ( _pi / 2 ) ) e. CC ) |
| 7 | coshalfpim | |- ( ( A x. ( _pi / 2 ) ) e. CC -> ( cos ` ( ( _pi / 2 ) - ( A x. ( _pi / 2 ) ) ) ) = ( sin ` ( A x. ( _pi / 2 ) ) ) ) |
|
| 8 | 6 7 | syl | |- ( A e. CC -> ( cos ` ( ( _pi / 2 ) - ( A x. ( _pi / 2 ) ) ) ) = ( sin ` ( A x. ( _pi / 2 ) ) ) ) |
| 9 | 8 | 3ad2ant1 | |- ( ( A e. CC /\ B e. CC /\ ( A + B ) = 1 ) -> ( cos ` ( ( _pi / 2 ) - ( A x. ( _pi / 2 ) ) ) ) = ( sin ` ( A x. ( _pi / 2 ) ) ) ) |
| 10 | adddir | |- ( ( A e. CC /\ B e. CC /\ ( _pi / 2 ) e. CC ) -> ( ( A + B ) x. ( _pi / 2 ) ) = ( ( A x. ( _pi / 2 ) ) + ( B x. ( _pi / 2 ) ) ) ) |
|
| 11 | 4 10 | mp3an3 | |- ( ( A e. CC /\ B e. CC ) -> ( ( A + B ) x. ( _pi / 2 ) ) = ( ( A x. ( _pi / 2 ) ) + ( B x. ( _pi / 2 ) ) ) ) |
| 12 | 11 | 3adant3 | |- ( ( A e. CC /\ B e. CC /\ ( A + B ) = 1 ) -> ( ( A + B ) x. ( _pi / 2 ) ) = ( ( A x. ( _pi / 2 ) ) + ( B x. ( _pi / 2 ) ) ) ) |
| 13 | oveq1 | |- ( ( A + B ) = 1 -> ( ( A + B ) x. ( _pi / 2 ) ) = ( 1 x. ( _pi / 2 ) ) ) |
|
| 14 | 4 | mullidi | |- ( 1 x. ( _pi / 2 ) ) = ( _pi / 2 ) |
| 15 | 13 14 | eqtrdi | |- ( ( A + B ) = 1 -> ( ( A + B ) x. ( _pi / 2 ) ) = ( _pi / 2 ) ) |
| 16 | 15 | 3ad2ant3 | |- ( ( A e. CC /\ B e. CC /\ ( A + B ) = 1 ) -> ( ( A + B ) x. ( _pi / 2 ) ) = ( _pi / 2 ) ) |
| 17 | 12 16 | eqtr3d | |- ( ( A e. CC /\ B e. CC /\ ( A + B ) = 1 ) -> ( ( A x. ( _pi / 2 ) ) + ( B x. ( _pi / 2 ) ) ) = ( _pi / 2 ) ) |
| 18 | mulcl | |- ( ( B e. CC /\ ( _pi / 2 ) e. CC ) -> ( B x. ( _pi / 2 ) ) e. CC ) |
|
| 19 | 4 18 | mpan2 | |- ( B e. CC -> ( B x. ( _pi / 2 ) ) e. CC ) |
| 20 | subadd | |- ( ( ( _pi / 2 ) e. CC /\ ( A x. ( _pi / 2 ) ) e. CC /\ ( B x. ( _pi / 2 ) ) e. CC ) -> ( ( ( _pi / 2 ) - ( A x. ( _pi / 2 ) ) ) = ( B x. ( _pi / 2 ) ) <-> ( ( A x. ( _pi / 2 ) ) + ( B x. ( _pi / 2 ) ) ) = ( _pi / 2 ) ) ) |
|
| 21 | 4 6 19 20 | mp3an3an | |- ( ( A e. CC /\ B e. CC ) -> ( ( ( _pi / 2 ) - ( A x. ( _pi / 2 ) ) ) = ( B x. ( _pi / 2 ) ) <-> ( ( A x. ( _pi / 2 ) ) + ( B x. ( _pi / 2 ) ) ) = ( _pi / 2 ) ) ) |
| 22 | 21 | 3adant3 | |- ( ( A e. CC /\ B e. CC /\ ( A + B ) = 1 ) -> ( ( ( _pi / 2 ) - ( A x. ( _pi / 2 ) ) ) = ( B x. ( _pi / 2 ) ) <-> ( ( A x. ( _pi / 2 ) ) + ( B x. ( _pi / 2 ) ) ) = ( _pi / 2 ) ) ) |
| 23 | 17 22 | mpbird | |- ( ( A e. CC /\ B e. CC /\ ( A + B ) = 1 ) -> ( ( _pi / 2 ) - ( A x. ( _pi / 2 ) ) ) = ( B x. ( _pi / 2 ) ) ) |
| 24 | 23 | fveq2d | |- ( ( A e. CC /\ B e. CC /\ ( A + B ) = 1 ) -> ( cos ` ( ( _pi / 2 ) - ( A x. ( _pi / 2 ) ) ) ) = ( cos ` ( B x. ( _pi / 2 ) ) ) ) |
| 25 | 9 24 | eqtr3d | |- ( ( A e. CC /\ B e. CC /\ ( A + B ) = 1 ) -> ( sin ` ( A x. ( _pi / 2 ) ) ) = ( cos ` ( B x. ( _pi / 2 ) ) ) ) |