This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for sii . (Contributed by NM, 23-Nov-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | siii.1 | |- X = ( BaseSet ` U ) |
|
| siii.6 | |- N = ( normCV ` U ) |
||
| siii.7 | |- P = ( .iOLD ` U ) |
||
| siii.9 | |- U e. CPreHilOLD |
||
| siii.a | |- A e. X |
||
| siii.b | |- B e. X |
||
| sii1.3 | |- M = ( -v ` U ) |
||
| sii1.4 | |- S = ( .sOLD ` U ) |
||
| sii1.c | |- C e. CC |
||
| sii1.r | |- ( C x. ( A P B ) ) e. RR |
||
| sii1.z | |- 0 <_ ( C x. ( A P B ) ) |
||
| Assertion | siilem1 | |- ( ( B P A ) = ( C x. ( ( N ` B ) ^ 2 ) ) -> ( sqrt ` ( ( A P B ) x. ( C x. ( ( N ` B ) ^ 2 ) ) ) ) <_ ( ( N ` A ) x. ( N ` B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | siii.1 | |- X = ( BaseSet ` U ) |
|
| 2 | siii.6 | |- N = ( normCV ` U ) |
|
| 3 | siii.7 | |- P = ( .iOLD ` U ) |
|
| 4 | siii.9 | |- U e. CPreHilOLD |
|
| 5 | siii.a | |- A e. X |
|
| 6 | siii.b | |- B e. X |
|
| 7 | sii1.3 | |- M = ( -v ` U ) |
|
| 8 | sii1.4 | |- S = ( .sOLD ` U ) |
|
| 9 | sii1.c | |- C e. CC |
|
| 10 | sii1.r | |- ( C x. ( A P B ) ) e. RR |
|
| 11 | sii1.z | |- 0 <_ ( C x. ( A P B ) ) |
|
| 12 | 4 | phnvi | |- U e. NrmCVec |
| 13 | 9 | cjcli | |- ( * ` C ) e. CC |
| 14 | 1 8 | nvscl | |- ( ( U e. NrmCVec /\ ( * ` C ) e. CC /\ B e. X ) -> ( ( * ` C ) S B ) e. X ) |
| 15 | 12 13 6 14 | mp3an | |- ( ( * ` C ) S B ) e. X |
| 16 | 1 7 | nvmcl | |- ( ( U e. NrmCVec /\ A e. X /\ ( ( * ` C ) S B ) e. X ) -> ( A M ( ( * ` C ) S B ) ) e. X ) |
| 17 | 12 5 15 16 | mp3an | |- ( A M ( ( * ` C ) S B ) ) e. X |
| 18 | 1 2 12 17 | nvcli | |- ( N ` ( A M ( ( * ` C ) S B ) ) ) e. RR |
| 19 | 18 | sqge0i | |- 0 <_ ( ( N ` ( A M ( ( * ` C ) S B ) ) ) ^ 2 ) |
| 20 | 17 5 15 | 3pm3.2i | |- ( ( A M ( ( * ` C ) S B ) ) e. X /\ A e. X /\ ( ( * ` C ) S B ) e. X ) |
| 21 | 1 7 3 | dipsubdi | |- ( ( U e. CPreHilOLD /\ ( ( A M ( ( * ` C ) S B ) ) e. X /\ A e. X /\ ( ( * ` C ) S B ) e. X ) ) -> ( ( A M ( ( * ` C ) S B ) ) P ( A M ( ( * ` C ) S B ) ) ) = ( ( ( A M ( ( * ` C ) S B ) ) P A ) - ( ( A M ( ( * ` C ) S B ) ) P ( ( * ` C ) S B ) ) ) ) |
| 22 | 4 20 21 | mp2an | |- ( ( A M ( ( * ` C ) S B ) ) P ( A M ( ( * ` C ) S B ) ) ) = ( ( ( A M ( ( * ` C ) S B ) ) P A ) - ( ( A M ( ( * ` C ) S B ) ) P ( ( * ` C ) S B ) ) ) |
| 23 | 1 2 3 | ipidsq | |- ( ( U e. NrmCVec /\ ( A M ( ( * ` C ) S B ) ) e. X ) -> ( ( A M ( ( * ` C ) S B ) ) P ( A M ( ( * ` C ) S B ) ) ) = ( ( N ` ( A M ( ( * ` C ) S B ) ) ) ^ 2 ) ) |
| 24 | 12 17 23 | mp2an | |- ( ( A M ( ( * ` C ) S B ) ) P ( A M ( ( * ` C ) S B ) ) ) = ( ( N ` ( A M ( ( * ` C ) S B ) ) ) ^ 2 ) |
| 25 | 13 6 15 | 3pm3.2i | |- ( ( * ` C ) e. CC /\ B e. X /\ ( ( * ` C ) S B ) e. X ) |
| 26 | 1 8 3 | dipass | |- ( ( U e. CPreHilOLD /\ ( ( * ` C ) e. CC /\ B e. X /\ ( ( * ` C ) S B ) e. X ) ) -> ( ( ( * ` C ) S B ) P ( ( * ` C ) S B ) ) = ( ( * ` C ) x. ( B P ( ( * ` C ) S B ) ) ) ) |
| 27 | 4 25 26 | mp2an | |- ( ( ( * ` C ) S B ) P ( ( * ` C ) S B ) ) = ( ( * ` C ) x. ( B P ( ( * ` C ) S B ) ) ) |
| 28 | 6 9 6 | 3pm3.2i | |- ( B e. X /\ C e. CC /\ B e. X ) |
| 29 | 1 8 3 | dipassr2 | |- ( ( U e. CPreHilOLD /\ ( B e. X /\ C e. CC /\ B e. X ) ) -> ( B P ( ( * ` C ) S B ) ) = ( C x. ( B P B ) ) ) |
| 30 | 4 28 29 | mp2an | |- ( B P ( ( * ` C ) S B ) ) = ( C x. ( B P B ) ) |
| 31 | 1 2 3 | ipidsq | |- ( ( U e. NrmCVec /\ B e. X ) -> ( B P B ) = ( ( N ` B ) ^ 2 ) ) |
| 32 | 12 6 31 | mp2an | |- ( B P B ) = ( ( N ` B ) ^ 2 ) |
| 33 | 32 | oveq2i | |- ( C x. ( B P B ) ) = ( C x. ( ( N ` B ) ^ 2 ) ) |
| 34 | 30 33 | eqtri | |- ( B P ( ( * ` C ) S B ) ) = ( C x. ( ( N ` B ) ^ 2 ) ) |
| 35 | 34 | oveq2i | |- ( ( * ` C ) x. ( B P ( ( * ` C ) S B ) ) ) = ( ( * ` C ) x. ( C x. ( ( N ` B ) ^ 2 ) ) ) |
| 36 | 27 35 | eqtri | |- ( ( ( * ` C ) S B ) P ( ( * ` C ) S B ) ) = ( ( * ` C ) x. ( C x. ( ( N ` B ) ^ 2 ) ) ) |
| 37 | 36 | oveq2i | |- ( ( C x. ( A P B ) ) - ( ( ( * ` C ) S B ) P ( ( * ` C ) S B ) ) ) = ( ( C x. ( A P B ) ) - ( ( * ` C ) x. ( C x. ( ( N ` B ) ^ 2 ) ) ) ) |
| 38 | 37 | oveq2i | |- ( ( ( ( N ` A ) ^ 2 ) - ( ( * ` C ) x. ( B P A ) ) ) - ( ( C x. ( A P B ) ) - ( ( ( * ` C ) S B ) P ( ( * ` C ) S B ) ) ) ) = ( ( ( ( N ` A ) ^ 2 ) - ( ( * ` C ) x. ( B P A ) ) ) - ( ( C x. ( A P B ) ) - ( ( * ` C ) x. ( C x. ( ( N ` B ) ^ 2 ) ) ) ) ) |
| 39 | 1 2 12 5 | nvcli | |- ( N ` A ) e. RR |
| 40 | 39 | recni | |- ( N ` A ) e. CC |
| 41 | 40 | sqcli | |- ( ( N ` A ) ^ 2 ) e. CC |
| 42 | 1 3 | dipcl | |- ( ( U e. NrmCVec /\ B e. X /\ A e. X ) -> ( B P A ) e. CC ) |
| 43 | 12 6 5 42 | mp3an | |- ( B P A ) e. CC |
| 44 | 13 43 | mulcli | |- ( ( * ` C ) x. ( B P A ) ) e. CC |
| 45 | 10 | recni | |- ( C x. ( A P B ) ) e. CC |
| 46 | 1 2 12 6 | nvcli | |- ( N ` B ) e. RR |
| 47 | 46 | recni | |- ( N ` B ) e. CC |
| 48 | 47 | sqcli | |- ( ( N ` B ) ^ 2 ) e. CC |
| 49 | 9 48 | mulcli | |- ( C x. ( ( N ` B ) ^ 2 ) ) e. CC |
| 50 | 13 49 | mulcli | |- ( ( * ` C ) x. ( C x. ( ( N ` B ) ^ 2 ) ) ) e. CC |
| 51 | sub4 | |- ( ( ( ( ( N ` A ) ^ 2 ) e. CC /\ ( ( * ` C ) x. ( B P A ) ) e. CC ) /\ ( ( C x. ( A P B ) ) e. CC /\ ( ( * ` C ) x. ( C x. ( ( N ` B ) ^ 2 ) ) ) e. CC ) ) -> ( ( ( ( N ` A ) ^ 2 ) - ( ( * ` C ) x. ( B P A ) ) ) - ( ( C x. ( A P B ) ) - ( ( * ` C ) x. ( C x. ( ( N ` B ) ^ 2 ) ) ) ) ) = ( ( ( ( N ` A ) ^ 2 ) - ( C x. ( A P B ) ) ) - ( ( ( * ` C ) x. ( B P A ) ) - ( ( * ` C ) x. ( C x. ( ( N ` B ) ^ 2 ) ) ) ) ) ) |
|
| 52 | 41 44 45 50 51 | mp4an | |- ( ( ( ( N ` A ) ^ 2 ) - ( ( * ` C ) x. ( B P A ) ) ) - ( ( C x. ( A P B ) ) - ( ( * ` C ) x. ( C x. ( ( N ` B ) ^ 2 ) ) ) ) ) = ( ( ( ( N ` A ) ^ 2 ) - ( C x. ( A P B ) ) ) - ( ( ( * ` C ) x. ( B P A ) ) - ( ( * ` C ) x. ( C x. ( ( N ` B ) ^ 2 ) ) ) ) ) |
| 53 | 38 52 | eqtri | |- ( ( ( ( N ` A ) ^ 2 ) - ( ( * ` C ) x. ( B P A ) ) ) - ( ( C x. ( A P B ) ) - ( ( ( * ` C ) S B ) P ( ( * ` C ) S B ) ) ) ) = ( ( ( ( N ` A ) ^ 2 ) - ( C x. ( A P B ) ) ) - ( ( ( * ` C ) x. ( B P A ) ) - ( ( * ` C ) x. ( C x. ( ( N ` B ) ^ 2 ) ) ) ) ) |
| 54 | 5 15 5 | 3pm3.2i | |- ( A e. X /\ ( ( * ` C ) S B ) e. X /\ A e. X ) |
| 55 | 1 7 3 | dipsubdir | |- ( ( U e. CPreHilOLD /\ ( A e. X /\ ( ( * ` C ) S B ) e. X /\ A e. X ) ) -> ( ( A M ( ( * ` C ) S B ) ) P A ) = ( ( A P A ) - ( ( ( * ` C ) S B ) P A ) ) ) |
| 56 | 4 54 55 | mp2an | |- ( ( A M ( ( * ` C ) S B ) ) P A ) = ( ( A P A ) - ( ( ( * ` C ) S B ) P A ) ) |
| 57 | 1 2 3 | ipidsq | |- ( ( U e. NrmCVec /\ A e. X ) -> ( A P A ) = ( ( N ` A ) ^ 2 ) ) |
| 58 | 12 5 57 | mp2an | |- ( A P A ) = ( ( N ` A ) ^ 2 ) |
| 59 | 13 6 5 | 3pm3.2i | |- ( ( * ` C ) e. CC /\ B e. X /\ A e. X ) |
| 60 | 1 8 3 | dipass | |- ( ( U e. CPreHilOLD /\ ( ( * ` C ) e. CC /\ B e. X /\ A e. X ) ) -> ( ( ( * ` C ) S B ) P A ) = ( ( * ` C ) x. ( B P A ) ) ) |
| 61 | 4 59 60 | mp2an | |- ( ( ( * ` C ) S B ) P A ) = ( ( * ` C ) x. ( B P A ) ) |
| 62 | 58 61 | oveq12i | |- ( ( A P A ) - ( ( ( * ` C ) S B ) P A ) ) = ( ( ( N ` A ) ^ 2 ) - ( ( * ` C ) x. ( B P A ) ) ) |
| 63 | 56 62 | eqtri | |- ( ( A M ( ( * ` C ) S B ) ) P A ) = ( ( ( N ` A ) ^ 2 ) - ( ( * ` C ) x. ( B P A ) ) ) |
| 64 | 5 15 15 | 3pm3.2i | |- ( A e. X /\ ( ( * ` C ) S B ) e. X /\ ( ( * ` C ) S B ) e. X ) |
| 65 | 1 7 3 | dipsubdir | |- ( ( U e. CPreHilOLD /\ ( A e. X /\ ( ( * ` C ) S B ) e. X /\ ( ( * ` C ) S B ) e. X ) ) -> ( ( A M ( ( * ` C ) S B ) ) P ( ( * ` C ) S B ) ) = ( ( A P ( ( * ` C ) S B ) ) - ( ( ( * ` C ) S B ) P ( ( * ` C ) S B ) ) ) ) |
| 66 | 4 64 65 | mp2an | |- ( ( A M ( ( * ` C ) S B ) ) P ( ( * ` C ) S B ) ) = ( ( A P ( ( * ` C ) S B ) ) - ( ( ( * ` C ) S B ) P ( ( * ` C ) S B ) ) ) |
| 67 | 5 9 6 | 3pm3.2i | |- ( A e. X /\ C e. CC /\ B e. X ) |
| 68 | 1 8 3 | dipassr2 | |- ( ( U e. CPreHilOLD /\ ( A e. X /\ C e. CC /\ B e. X ) ) -> ( A P ( ( * ` C ) S B ) ) = ( C x. ( A P B ) ) ) |
| 69 | 4 67 68 | mp2an | |- ( A P ( ( * ` C ) S B ) ) = ( C x. ( A P B ) ) |
| 70 | 69 | oveq1i | |- ( ( A P ( ( * ` C ) S B ) ) - ( ( ( * ` C ) S B ) P ( ( * ` C ) S B ) ) ) = ( ( C x. ( A P B ) ) - ( ( ( * ` C ) S B ) P ( ( * ` C ) S B ) ) ) |
| 71 | 66 70 | eqtri | |- ( ( A M ( ( * ` C ) S B ) ) P ( ( * ` C ) S B ) ) = ( ( C x. ( A P B ) ) - ( ( ( * ` C ) S B ) P ( ( * ` C ) S B ) ) ) |
| 72 | 63 71 | oveq12i | |- ( ( ( A M ( ( * ` C ) S B ) ) P A ) - ( ( A M ( ( * ` C ) S B ) ) P ( ( * ` C ) S B ) ) ) = ( ( ( ( N ` A ) ^ 2 ) - ( ( * ` C ) x. ( B P A ) ) ) - ( ( C x. ( A P B ) ) - ( ( ( * ` C ) S B ) P ( ( * ` C ) S B ) ) ) ) |
| 73 | 13 43 49 | subdii | |- ( ( * ` C ) x. ( ( B P A ) - ( C x. ( ( N ` B ) ^ 2 ) ) ) ) = ( ( ( * ` C ) x. ( B P A ) ) - ( ( * ` C ) x. ( C x. ( ( N ` B ) ^ 2 ) ) ) ) |
| 74 | 73 | oveq2i | |- ( ( ( ( N ` A ) ^ 2 ) - ( C x. ( A P B ) ) ) - ( ( * ` C ) x. ( ( B P A ) - ( C x. ( ( N ` B ) ^ 2 ) ) ) ) ) = ( ( ( ( N ` A ) ^ 2 ) - ( C x. ( A P B ) ) ) - ( ( ( * ` C ) x. ( B P A ) ) - ( ( * ` C ) x. ( C x. ( ( N ` B ) ^ 2 ) ) ) ) ) |
| 75 | 53 72 74 | 3eqtr4i | |- ( ( ( A M ( ( * ` C ) S B ) ) P A ) - ( ( A M ( ( * ` C ) S B ) ) P ( ( * ` C ) S B ) ) ) = ( ( ( ( N ` A ) ^ 2 ) - ( C x. ( A P B ) ) ) - ( ( * ` C ) x. ( ( B P A ) - ( C x. ( ( N ` B ) ^ 2 ) ) ) ) ) |
| 76 | 22 24 75 | 3eqtr3i | |- ( ( N ` ( A M ( ( * ` C ) S B ) ) ) ^ 2 ) = ( ( ( ( N ` A ) ^ 2 ) - ( C x. ( A P B ) ) ) - ( ( * ` C ) x. ( ( B P A ) - ( C x. ( ( N ` B ) ^ 2 ) ) ) ) ) |
| 77 | 19 76 | breqtri | |- 0 <_ ( ( ( ( N ` A ) ^ 2 ) - ( C x. ( A P B ) ) ) - ( ( * ` C ) x. ( ( B P A ) - ( C x. ( ( N ` B ) ^ 2 ) ) ) ) ) |
| 78 | 43 49 | subeq0i | |- ( ( ( B P A ) - ( C x. ( ( N ` B ) ^ 2 ) ) ) = 0 <-> ( B P A ) = ( C x. ( ( N ` B ) ^ 2 ) ) ) |
| 79 | oveq2 | |- ( ( ( B P A ) - ( C x. ( ( N ` B ) ^ 2 ) ) ) = 0 -> ( ( * ` C ) x. ( ( B P A ) - ( C x. ( ( N ` B ) ^ 2 ) ) ) ) = ( ( * ` C ) x. 0 ) ) |
|
| 80 | 13 | mul01i | |- ( ( * ` C ) x. 0 ) = 0 |
| 81 | 79 80 | eqtrdi | |- ( ( ( B P A ) - ( C x. ( ( N ` B ) ^ 2 ) ) ) = 0 -> ( ( * ` C ) x. ( ( B P A ) - ( C x. ( ( N ` B ) ^ 2 ) ) ) ) = 0 ) |
| 82 | 78 81 | sylbir | |- ( ( B P A ) = ( C x. ( ( N ` B ) ^ 2 ) ) -> ( ( * ` C ) x. ( ( B P A ) - ( C x. ( ( N ` B ) ^ 2 ) ) ) ) = 0 ) |
| 83 | 82 | oveq2d | |- ( ( B P A ) = ( C x. ( ( N ` B ) ^ 2 ) ) -> ( ( ( ( N ` A ) ^ 2 ) - ( C x. ( A P B ) ) ) - ( ( * ` C ) x. ( ( B P A ) - ( C x. ( ( N ` B ) ^ 2 ) ) ) ) ) = ( ( ( ( N ` A ) ^ 2 ) - ( C x. ( A P B ) ) ) - 0 ) ) |
| 84 | 39 | resqcli | |- ( ( N ` A ) ^ 2 ) e. RR |
| 85 | 84 | recni | |- ( ( N ` A ) ^ 2 ) e. CC |
| 86 | 85 45 | subcli | |- ( ( ( N ` A ) ^ 2 ) - ( C x. ( A P B ) ) ) e. CC |
| 87 | 86 | subid1i | |- ( ( ( ( N ` A ) ^ 2 ) - ( C x. ( A P B ) ) ) - 0 ) = ( ( ( N ` A ) ^ 2 ) - ( C x. ( A P B ) ) ) |
| 88 | 83 87 | eqtrdi | |- ( ( B P A ) = ( C x. ( ( N ` B ) ^ 2 ) ) -> ( ( ( ( N ` A ) ^ 2 ) - ( C x. ( A P B ) ) ) - ( ( * ` C ) x. ( ( B P A ) - ( C x. ( ( N ` B ) ^ 2 ) ) ) ) ) = ( ( ( N ` A ) ^ 2 ) - ( C x. ( A P B ) ) ) ) |
| 89 | 77 88 | breqtrid | |- ( ( B P A ) = ( C x. ( ( N ` B ) ^ 2 ) ) -> 0 <_ ( ( ( N ` A ) ^ 2 ) - ( C x. ( A P B ) ) ) ) |
| 90 | 84 10 | subge0i | |- ( 0 <_ ( ( ( N ` A ) ^ 2 ) - ( C x. ( A P B ) ) ) <-> ( C x. ( A P B ) ) <_ ( ( N ` A ) ^ 2 ) ) |
| 91 | 89 90 | sylib | |- ( ( B P A ) = ( C x. ( ( N ` B ) ^ 2 ) ) -> ( C x. ( A P B ) ) <_ ( ( N ` A ) ^ 2 ) ) |
| 92 | 46 | resqcli | |- ( ( N ` B ) ^ 2 ) e. RR |
| 93 | 46 | sqge0i | |- 0 <_ ( ( N ` B ) ^ 2 ) |
| 94 | 92 93 | pm3.2i | |- ( ( ( N ` B ) ^ 2 ) e. RR /\ 0 <_ ( ( N ` B ) ^ 2 ) ) |
| 95 | 10 84 94 | 3pm3.2i | |- ( ( C x. ( A P B ) ) e. RR /\ ( ( N ` A ) ^ 2 ) e. RR /\ ( ( ( N ` B ) ^ 2 ) e. RR /\ 0 <_ ( ( N ` B ) ^ 2 ) ) ) |
| 96 | lemul1a | |- ( ( ( ( C x. ( A P B ) ) e. RR /\ ( ( N ` A ) ^ 2 ) e. RR /\ ( ( ( N ` B ) ^ 2 ) e. RR /\ 0 <_ ( ( N ` B ) ^ 2 ) ) ) /\ ( C x. ( A P B ) ) <_ ( ( N ` A ) ^ 2 ) ) -> ( ( C x. ( A P B ) ) x. ( ( N ` B ) ^ 2 ) ) <_ ( ( ( N ` A ) ^ 2 ) x. ( ( N ` B ) ^ 2 ) ) ) |
|
| 97 | 95 96 | mpan | |- ( ( C x. ( A P B ) ) <_ ( ( N ` A ) ^ 2 ) -> ( ( C x. ( A P B ) ) x. ( ( N ` B ) ^ 2 ) ) <_ ( ( ( N ` A ) ^ 2 ) x. ( ( N ` B ) ^ 2 ) ) ) |
| 98 | 91 97 | syl | |- ( ( B P A ) = ( C x. ( ( N ` B ) ^ 2 ) ) -> ( ( C x. ( A P B ) ) x. ( ( N ` B ) ^ 2 ) ) <_ ( ( ( N ` A ) ^ 2 ) x. ( ( N ` B ) ^ 2 ) ) ) |
| 99 | 40 47 | sqmuli | |- ( ( ( N ` A ) x. ( N ` B ) ) ^ 2 ) = ( ( ( N ` A ) ^ 2 ) x. ( ( N ` B ) ^ 2 ) ) |
| 100 | 98 99 | breqtrrdi | |- ( ( B P A ) = ( C x. ( ( N ` B ) ^ 2 ) ) -> ( ( C x. ( A P B ) ) x. ( ( N ` B ) ^ 2 ) ) <_ ( ( ( N ` A ) x. ( N ` B ) ) ^ 2 ) ) |
| 101 | 10 92 | mulge0i | |- ( ( 0 <_ ( C x. ( A P B ) ) /\ 0 <_ ( ( N ` B ) ^ 2 ) ) -> 0 <_ ( ( C x. ( A P B ) ) x. ( ( N ` B ) ^ 2 ) ) ) |
| 102 | 11 93 101 | mp2an | |- 0 <_ ( ( C x. ( A P B ) ) x. ( ( N ` B ) ^ 2 ) ) |
| 103 | 39 46 | remulcli | |- ( ( N ` A ) x. ( N ` B ) ) e. RR |
| 104 | 103 | sqge0i | |- 0 <_ ( ( ( N ` A ) x. ( N ` B ) ) ^ 2 ) |
| 105 | 10 92 | remulcli | |- ( ( C x. ( A P B ) ) x. ( ( N ` B ) ^ 2 ) ) e. RR |
| 106 | 103 | resqcli | |- ( ( ( N ` A ) x. ( N ` B ) ) ^ 2 ) e. RR |
| 107 | 105 106 | sqrtlei | |- ( ( 0 <_ ( ( C x. ( A P B ) ) x. ( ( N ` B ) ^ 2 ) ) /\ 0 <_ ( ( ( N ` A ) x. ( N ` B ) ) ^ 2 ) ) -> ( ( ( C x. ( A P B ) ) x. ( ( N ` B ) ^ 2 ) ) <_ ( ( ( N ` A ) x. ( N ` B ) ) ^ 2 ) <-> ( sqrt ` ( ( C x. ( A P B ) ) x. ( ( N ` B ) ^ 2 ) ) ) <_ ( sqrt ` ( ( ( N ` A ) x. ( N ` B ) ) ^ 2 ) ) ) ) |
| 108 | 102 104 107 | mp2an | |- ( ( ( C x. ( A P B ) ) x. ( ( N ` B ) ^ 2 ) ) <_ ( ( ( N ` A ) x. ( N ` B ) ) ^ 2 ) <-> ( sqrt ` ( ( C x. ( A P B ) ) x. ( ( N ` B ) ^ 2 ) ) ) <_ ( sqrt ` ( ( ( N ` A ) x. ( N ` B ) ) ^ 2 ) ) ) |
| 109 | 100 108 | sylib | |- ( ( B P A ) = ( C x. ( ( N ` B ) ^ 2 ) ) -> ( sqrt ` ( ( C x. ( A P B ) ) x. ( ( N ` B ) ^ 2 ) ) ) <_ ( sqrt ` ( ( ( N ` A ) x. ( N ` B ) ) ^ 2 ) ) ) |
| 110 | 1 3 | dipcl | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( A P B ) e. CC ) |
| 111 | 12 5 6 110 | mp3an | |- ( A P B ) e. CC |
| 112 | 9 111 | mulcomi | |- ( C x. ( A P B ) ) = ( ( A P B ) x. C ) |
| 113 | 112 | oveq1i | |- ( ( C x. ( A P B ) ) x. ( ( N ` B ) ^ 2 ) ) = ( ( ( A P B ) x. C ) x. ( ( N ` B ) ^ 2 ) ) |
| 114 | 92 | recni | |- ( ( N ` B ) ^ 2 ) e. CC |
| 115 | 111 9 114 | mulassi | |- ( ( ( A P B ) x. C ) x. ( ( N ` B ) ^ 2 ) ) = ( ( A P B ) x. ( C x. ( ( N ` B ) ^ 2 ) ) ) |
| 116 | 113 115 | eqtri | |- ( ( C x. ( A P B ) ) x. ( ( N ` B ) ^ 2 ) ) = ( ( A P B ) x. ( C x. ( ( N ` B ) ^ 2 ) ) ) |
| 117 | 116 | fveq2i | |- ( sqrt ` ( ( C x. ( A P B ) ) x. ( ( N ` B ) ^ 2 ) ) ) = ( sqrt ` ( ( A P B ) x. ( C x. ( ( N ` B ) ^ 2 ) ) ) ) |
| 118 | 1 2 | nvge0 | |- ( ( U e. NrmCVec /\ A e. X ) -> 0 <_ ( N ` A ) ) |
| 119 | 12 5 118 | mp2an | |- 0 <_ ( N ` A ) |
| 120 | 1 2 | nvge0 | |- ( ( U e. NrmCVec /\ B e. X ) -> 0 <_ ( N ` B ) ) |
| 121 | 12 6 120 | mp2an | |- 0 <_ ( N ` B ) |
| 122 | 39 46 | mulge0i | |- ( ( 0 <_ ( N ` A ) /\ 0 <_ ( N ` B ) ) -> 0 <_ ( ( N ` A ) x. ( N ` B ) ) ) |
| 123 | 119 121 122 | mp2an | |- 0 <_ ( ( N ` A ) x. ( N ` B ) ) |
| 124 | 103 | sqrtsqi | |- ( 0 <_ ( ( N ` A ) x. ( N ` B ) ) -> ( sqrt ` ( ( ( N ` A ) x. ( N ` B ) ) ^ 2 ) ) = ( ( N ` A ) x. ( N ` B ) ) ) |
| 125 | 123 124 | ax-mp | |- ( sqrt ` ( ( ( N ` A ) x. ( N ` B ) ) ^ 2 ) ) = ( ( N ` A ) x. ( N ` B ) ) |
| 126 | 109 117 125 | 3brtr3g | |- ( ( B P A ) = ( C x. ( ( N ` B ) ^ 2 ) ) -> ( sqrt ` ( ( A P B ) x. ( C x. ( ( N ` B ) ^ 2 ) ) ) ) <_ ( ( N ` A ) x. ( N ` B ) ) ) |