This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The norm of a normed complex vector space is nonnegative. Second part of Problem 2 of Kreyszig p. 64. (Contributed by NM, 28-Nov-2006) (Proof shortened by AV, 10-Jul-2022) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nvge0.1 | |- X = ( BaseSet ` U ) |
|
| nvge0.6 | |- N = ( normCV ` U ) |
||
| Assertion | nvge0 | |- ( ( U e. NrmCVec /\ A e. X ) -> 0 <_ ( N ` A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nvge0.1 | |- X = ( BaseSet ` U ) |
|
| 2 | nvge0.6 | |- N = ( normCV ` U ) |
|
| 3 | 2rp | |- 2 e. RR+ |
|
| 4 | 3 | a1i | |- ( ( U e. NrmCVec /\ A e. X ) -> 2 e. RR+ ) |
| 5 | 1 2 | nvcl | |- ( ( U e. NrmCVec /\ A e. X ) -> ( N ` A ) e. RR ) |
| 6 | eqid | |- ( 0vec ` U ) = ( 0vec ` U ) |
|
| 7 | 6 2 | nvz0 | |- ( U e. NrmCVec -> ( N ` ( 0vec ` U ) ) = 0 ) |
| 8 | 7 | adantr | |- ( ( U e. NrmCVec /\ A e. X ) -> ( N ` ( 0vec ` U ) ) = 0 ) |
| 9 | 1pneg1e0 | |- ( 1 + -u 1 ) = 0 |
|
| 10 | 9 | oveq1i | |- ( ( 1 + -u 1 ) ( .sOLD ` U ) A ) = ( 0 ( .sOLD ` U ) A ) |
| 11 | eqid | |- ( .sOLD ` U ) = ( .sOLD ` U ) |
|
| 12 | 1 11 6 | nv0 | |- ( ( U e. NrmCVec /\ A e. X ) -> ( 0 ( .sOLD ` U ) A ) = ( 0vec ` U ) ) |
| 13 | 10 12 | eqtr2id | |- ( ( U e. NrmCVec /\ A e. X ) -> ( 0vec ` U ) = ( ( 1 + -u 1 ) ( .sOLD ` U ) A ) ) |
| 14 | neg1cn | |- -u 1 e. CC |
|
| 15 | ax-1cn | |- 1 e. CC |
|
| 16 | eqid | |- ( +v ` U ) = ( +v ` U ) |
|
| 17 | 1 16 11 | nvdir | |- ( ( U e. NrmCVec /\ ( 1 e. CC /\ -u 1 e. CC /\ A e. X ) ) -> ( ( 1 + -u 1 ) ( .sOLD ` U ) A ) = ( ( 1 ( .sOLD ` U ) A ) ( +v ` U ) ( -u 1 ( .sOLD ` U ) A ) ) ) |
| 18 | 15 17 | mp3anr1 | |- ( ( U e. NrmCVec /\ ( -u 1 e. CC /\ A e. X ) ) -> ( ( 1 + -u 1 ) ( .sOLD ` U ) A ) = ( ( 1 ( .sOLD ` U ) A ) ( +v ` U ) ( -u 1 ( .sOLD ` U ) A ) ) ) |
| 19 | 14 18 | mpanr1 | |- ( ( U e. NrmCVec /\ A e. X ) -> ( ( 1 + -u 1 ) ( .sOLD ` U ) A ) = ( ( 1 ( .sOLD ` U ) A ) ( +v ` U ) ( -u 1 ( .sOLD ` U ) A ) ) ) |
| 20 | 1 11 | nvsid | |- ( ( U e. NrmCVec /\ A e. X ) -> ( 1 ( .sOLD ` U ) A ) = A ) |
| 21 | 20 | oveq1d | |- ( ( U e. NrmCVec /\ A e. X ) -> ( ( 1 ( .sOLD ` U ) A ) ( +v ` U ) ( -u 1 ( .sOLD ` U ) A ) ) = ( A ( +v ` U ) ( -u 1 ( .sOLD ` U ) A ) ) ) |
| 22 | 13 19 21 | 3eqtrd | |- ( ( U e. NrmCVec /\ A e. X ) -> ( 0vec ` U ) = ( A ( +v ` U ) ( -u 1 ( .sOLD ` U ) A ) ) ) |
| 23 | 22 | fveq2d | |- ( ( U e. NrmCVec /\ A e. X ) -> ( N ` ( 0vec ` U ) ) = ( N ` ( A ( +v ` U ) ( -u 1 ( .sOLD ` U ) A ) ) ) ) |
| 24 | 8 23 | eqtr3d | |- ( ( U e. NrmCVec /\ A e. X ) -> 0 = ( N ` ( A ( +v ` U ) ( -u 1 ( .sOLD ` U ) A ) ) ) ) |
| 25 | 1 11 | nvscl | |- ( ( U e. NrmCVec /\ -u 1 e. CC /\ A e. X ) -> ( -u 1 ( .sOLD ` U ) A ) e. X ) |
| 26 | 14 25 | mp3an2 | |- ( ( U e. NrmCVec /\ A e. X ) -> ( -u 1 ( .sOLD ` U ) A ) e. X ) |
| 27 | 1 16 2 | nvtri | |- ( ( U e. NrmCVec /\ A e. X /\ ( -u 1 ( .sOLD ` U ) A ) e. X ) -> ( N ` ( A ( +v ` U ) ( -u 1 ( .sOLD ` U ) A ) ) ) <_ ( ( N ` A ) + ( N ` ( -u 1 ( .sOLD ` U ) A ) ) ) ) |
| 28 | 26 27 | mpd3an3 | |- ( ( U e. NrmCVec /\ A e. X ) -> ( N ` ( A ( +v ` U ) ( -u 1 ( .sOLD ` U ) A ) ) ) <_ ( ( N ` A ) + ( N ` ( -u 1 ( .sOLD ` U ) A ) ) ) ) |
| 29 | 24 28 | eqbrtrd | |- ( ( U e. NrmCVec /\ A e. X ) -> 0 <_ ( ( N ` A ) + ( N ` ( -u 1 ( .sOLD ` U ) A ) ) ) ) |
| 30 | 1 11 2 | nvm1 | |- ( ( U e. NrmCVec /\ A e. X ) -> ( N ` ( -u 1 ( .sOLD ` U ) A ) ) = ( N ` A ) ) |
| 31 | 30 | oveq2d | |- ( ( U e. NrmCVec /\ A e. X ) -> ( ( N ` A ) + ( N ` ( -u 1 ( .sOLD ` U ) A ) ) ) = ( ( N ` A ) + ( N ` A ) ) ) |
| 32 | 5 | recnd | |- ( ( U e. NrmCVec /\ A e. X ) -> ( N ` A ) e. CC ) |
| 33 | 32 | 2timesd | |- ( ( U e. NrmCVec /\ A e. X ) -> ( 2 x. ( N ` A ) ) = ( ( N ` A ) + ( N ` A ) ) ) |
| 34 | 31 33 | eqtr4d | |- ( ( U e. NrmCVec /\ A e. X ) -> ( ( N ` A ) + ( N ` ( -u 1 ( .sOLD ` U ) A ) ) ) = ( 2 x. ( N ` A ) ) ) |
| 35 | 29 34 | breqtrd | |- ( ( U e. NrmCVec /\ A e. X ) -> 0 <_ ( 2 x. ( N ` A ) ) ) |
| 36 | 4 5 35 | prodge0rd | |- ( ( U e. NrmCVec /\ A e. X ) -> 0 <_ ( N ` A ) ) |