This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete version of ipcau as of 22-Sep-2024. Schwarz inequality. Part of Lemma 3-2.1(a) of Kreyszig p. 137. This is also called the Cauchy-Schwarz inequality by some authors and Bunjakovaskij-Cauchy-Schwarz inequality by others. See also Theorems bcseqi , bcsiALT , bcsiHIL , csbren . (Contributed by NM, 12-Jan-2008) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sii.1 | |- X = ( BaseSet ` U ) |
|
| sii.6 | |- N = ( normCV ` U ) |
||
| sii.7 | |- P = ( .iOLD ` U ) |
||
| sii.9 | |- U e. CPreHilOLD |
||
| Assertion | sii | |- ( ( A e. X /\ B e. X ) -> ( abs ` ( A P B ) ) <_ ( ( N ` A ) x. ( N ` B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sii.1 | |- X = ( BaseSet ` U ) |
|
| 2 | sii.6 | |- N = ( normCV ` U ) |
|
| 3 | sii.7 | |- P = ( .iOLD ` U ) |
|
| 4 | sii.9 | |- U e. CPreHilOLD |
|
| 5 | fvoveq1 | |- ( A = if ( A e. X , A , ( 0vec ` U ) ) -> ( abs ` ( A P B ) ) = ( abs ` ( if ( A e. X , A , ( 0vec ` U ) ) P B ) ) ) |
|
| 6 | fveq2 | |- ( A = if ( A e. X , A , ( 0vec ` U ) ) -> ( N ` A ) = ( N ` if ( A e. X , A , ( 0vec ` U ) ) ) ) |
|
| 7 | 6 | oveq1d | |- ( A = if ( A e. X , A , ( 0vec ` U ) ) -> ( ( N ` A ) x. ( N ` B ) ) = ( ( N ` if ( A e. X , A , ( 0vec ` U ) ) ) x. ( N ` B ) ) ) |
| 8 | 5 7 | breq12d | |- ( A = if ( A e. X , A , ( 0vec ` U ) ) -> ( ( abs ` ( A P B ) ) <_ ( ( N ` A ) x. ( N ` B ) ) <-> ( abs ` ( if ( A e. X , A , ( 0vec ` U ) ) P B ) ) <_ ( ( N ` if ( A e. X , A , ( 0vec ` U ) ) ) x. ( N ` B ) ) ) ) |
| 9 | oveq2 | |- ( B = if ( B e. X , B , ( 0vec ` U ) ) -> ( if ( A e. X , A , ( 0vec ` U ) ) P B ) = ( if ( A e. X , A , ( 0vec ` U ) ) P if ( B e. X , B , ( 0vec ` U ) ) ) ) |
|
| 10 | 9 | fveq2d | |- ( B = if ( B e. X , B , ( 0vec ` U ) ) -> ( abs ` ( if ( A e. X , A , ( 0vec ` U ) ) P B ) ) = ( abs ` ( if ( A e. X , A , ( 0vec ` U ) ) P if ( B e. X , B , ( 0vec ` U ) ) ) ) ) |
| 11 | fveq2 | |- ( B = if ( B e. X , B , ( 0vec ` U ) ) -> ( N ` B ) = ( N ` if ( B e. X , B , ( 0vec ` U ) ) ) ) |
|
| 12 | 11 | oveq2d | |- ( B = if ( B e. X , B , ( 0vec ` U ) ) -> ( ( N ` if ( A e. X , A , ( 0vec ` U ) ) ) x. ( N ` B ) ) = ( ( N ` if ( A e. X , A , ( 0vec ` U ) ) ) x. ( N ` if ( B e. X , B , ( 0vec ` U ) ) ) ) ) |
| 13 | 10 12 | breq12d | |- ( B = if ( B e. X , B , ( 0vec ` U ) ) -> ( ( abs ` ( if ( A e. X , A , ( 0vec ` U ) ) P B ) ) <_ ( ( N ` if ( A e. X , A , ( 0vec ` U ) ) ) x. ( N ` B ) ) <-> ( abs ` ( if ( A e. X , A , ( 0vec ` U ) ) P if ( B e. X , B , ( 0vec ` U ) ) ) ) <_ ( ( N ` if ( A e. X , A , ( 0vec ` U ) ) ) x. ( N ` if ( B e. X , B , ( 0vec ` U ) ) ) ) ) ) |
| 14 | eqid | |- ( 0vec ` U ) = ( 0vec ` U ) |
|
| 15 | 1 14 4 | elimph | |- if ( A e. X , A , ( 0vec ` U ) ) e. X |
| 16 | 1 14 4 | elimph | |- if ( B e. X , B , ( 0vec ` U ) ) e. X |
| 17 | 1 2 3 4 15 16 | siii | |- ( abs ` ( if ( A e. X , A , ( 0vec ` U ) ) P if ( B e. X , B , ( 0vec ` U ) ) ) ) <_ ( ( N ` if ( A e. X , A , ( 0vec ` U ) ) ) x. ( N ` if ( B e. X , B , ( 0vec ` U ) ) ) ) |
| 18 | 8 13 17 | dedth2h | |- ( ( A e. X /\ B e. X ) -> ( abs ` ( A P B ) ) <_ ( ( N ` A ) x. ( N ` B ) ) ) |