This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distributive law for inner product subtraction. (Contributed by NM, 20-Nov-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ipsubdir.1 | |- X = ( BaseSet ` U ) |
|
| ipsubdir.3 | |- M = ( -v ` U ) |
||
| ipsubdir.7 | |- P = ( .iOLD ` U ) |
||
| Assertion | dipsubdi | |- ( ( U e. CPreHilOLD /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( A P ( B M C ) ) = ( ( A P B ) - ( A P C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ipsubdir.1 | |- X = ( BaseSet ` U ) |
|
| 2 | ipsubdir.3 | |- M = ( -v ` U ) |
|
| 3 | ipsubdir.7 | |- P = ( .iOLD ` U ) |
|
| 4 | id | |- ( ( C e. X /\ B e. X /\ A e. X ) -> ( C e. X /\ B e. X /\ A e. X ) ) |
|
| 5 | 4 | 3com13 | |- ( ( A e. X /\ B e. X /\ C e. X ) -> ( C e. X /\ B e. X /\ A e. X ) ) |
| 6 | id | |- ( ( B e. X /\ C e. X /\ A e. X ) -> ( B e. X /\ C e. X /\ A e. X ) ) |
|
| 7 | 6 | 3com12 | |- ( ( C e. X /\ B e. X /\ A e. X ) -> ( B e. X /\ C e. X /\ A e. X ) ) |
| 8 | 1 2 3 | dipsubdir | |- ( ( U e. CPreHilOLD /\ ( B e. X /\ C e. X /\ A e. X ) ) -> ( ( B M C ) P A ) = ( ( B P A ) - ( C P A ) ) ) |
| 9 | 7 8 | sylan2 | |- ( ( U e. CPreHilOLD /\ ( C e. X /\ B e. X /\ A e. X ) ) -> ( ( B M C ) P A ) = ( ( B P A ) - ( C P A ) ) ) |
| 10 | 9 | fveq2d | |- ( ( U e. CPreHilOLD /\ ( C e. X /\ B e. X /\ A e. X ) ) -> ( * ` ( ( B M C ) P A ) ) = ( * ` ( ( B P A ) - ( C P A ) ) ) ) |
| 11 | phnv | |- ( U e. CPreHilOLD -> U e. NrmCVec ) |
|
| 12 | simpl | |- ( ( U e. NrmCVec /\ ( C e. X /\ B e. X /\ A e. X ) ) -> U e. NrmCVec ) |
|
| 13 | 1 2 | nvmcl | |- ( ( U e. NrmCVec /\ B e. X /\ C e. X ) -> ( B M C ) e. X ) |
| 14 | 13 | 3com23 | |- ( ( U e. NrmCVec /\ C e. X /\ B e. X ) -> ( B M C ) e. X ) |
| 15 | 14 | 3adant3r3 | |- ( ( U e. NrmCVec /\ ( C e. X /\ B e. X /\ A e. X ) ) -> ( B M C ) e. X ) |
| 16 | simpr3 | |- ( ( U e. NrmCVec /\ ( C e. X /\ B e. X /\ A e. X ) ) -> A e. X ) |
|
| 17 | 1 3 | dipcj | |- ( ( U e. NrmCVec /\ ( B M C ) e. X /\ A e. X ) -> ( * ` ( ( B M C ) P A ) ) = ( A P ( B M C ) ) ) |
| 18 | 12 15 16 17 | syl3anc | |- ( ( U e. NrmCVec /\ ( C e. X /\ B e. X /\ A e. X ) ) -> ( * ` ( ( B M C ) P A ) ) = ( A P ( B M C ) ) ) |
| 19 | 11 18 | sylan | |- ( ( U e. CPreHilOLD /\ ( C e. X /\ B e. X /\ A e. X ) ) -> ( * ` ( ( B M C ) P A ) ) = ( A P ( B M C ) ) ) |
| 20 | 1 3 | dipcl | |- ( ( U e. NrmCVec /\ B e. X /\ A e. X ) -> ( B P A ) e. CC ) |
| 21 | 20 | 3adant3r1 | |- ( ( U e. NrmCVec /\ ( C e. X /\ B e. X /\ A e. X ) ) -> ( B P A ) e. CC ) |
| 22 | 1 3 | dipcl | |- ( ( U e. NrmCVec /\ C e. X /\ A e. X ) -> ( C P A ) e. CC ) |
| 23 | 22 | 3adant3r2 | |- ( ( U e. NrmCVec /\ ( C e. X /\ B e. X /\ A e. X ) ) -> ( C P A ) e. CC ) |
| 24 | cjsub | |- ( ( ( B P A ) e. CC /\ ( C P A ) e. CC ) -> ( * ` ( ( B P A ) - ( C P A ) ) ) = ( ( * ` ( B P A ) ) - ( * ` ( C P A ) ) ) ) |
|
| 25 | 21 23 24 | syl2anc | |- ( ( U e. NrmCVec /\ ( C e. X /\ B e. X /\ A e. X ) ) -> ( * ` ( ( B P A ) - ( C P A ) ) ) = ( ( * ` ( B P A ) ) - ( * ` ( C P A ) ) ) ) |
| 26 | 1 3 | dipcj | |- ( ( U e. NrmCVec /\ B e. X /\ A e. X ) -> ( * ` ( B P A ) ) = ( A P B ) ) |
| 27 | 26 | 3adant3r1 | |- ( ( U e. NrmCVec /\ ( C e. X /\ B e. X /\ A e. X ) ) -> ( * ` ( B P A ) ) = ( A P B ) ) |
| 28 | 1 3 | dipcj | |- ( ( U e. NrmCVec /\ C e. X /\ A e. X ) -> ( * ` ( C P A ) ) = ( A P C ) ) |
| 29 | 28 | 3adant3r2 | |- ( ( U e. NrmCVec /\ ( C e. X /\ B e. X /\ A e. X ) ) -> ( * ` ( C P A ) ) = ( A P C ) ) |
| 30 | 27 29 | oveq12d | |- ( ( U e. NrmCVec /\ ( C e. X /\ B e. X /\ A e. X ) ) -> ( ( * ` ( B P A ) ) - ( * ` ( C P A ) ) ) = ( ( A P B ) - ( A P C ) ) ) |
| 31 | 25 30 | eqtrd | |- ( ( U e. NrmCVec /\ ( C e. X /\ B e. X /\ A e. X ) ) -> ( * ` ( ( B P A ) - ( C P A ) ) ) = ( ( A P B ) - ( A P C ) ) ) |
| 32 | 11 31 | sylan | |- ( ( U e. CPreHilOLD /\ ( C e. X /\ B e. X /\ A e. X ) ) -> ( * ` ( ( B P A ) - ( C P A ) ) ) = ( ( A P B ) - ( A P C ) ) ) |
| 33 | 10 19 32 | 3eqtr3d | |- ( ( U e. CPreHilOLD /\ ( C e. X /\ B e. X /\ A e. X ) ) -> ( A P ( B M C ) ) = ( ( A P B ) - ( A P C ) ) ) |
| 34 | 5 33 | sylan2 | |- ( ( U e. CPreHilOLD /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( A P ( B M C ) ) = ( ( A P B ) - ( A P C ) ) ) |