This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: "Associative" law for inner product. Conjugate version of dipassr . (Contributed by NM, 23-Nov-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ipass.1 | |- X = ( BaseSet ` U ) |
|
| ipass.4 | |- S = ( .sOLD ` U ) |
||
| ipass.7 | |- P = ( .iOLD ` U ) |
||
| Assertion | dipassr2 | |- ( ( U e. CPreHilOLD /\ ( A e. X /\ B e. CC /\ C e. X ) ) -> ( A P ( ( * ` B ) S C ) ) = ( B x. ( A P C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ipass.1 | |- X = ( BaseSet ` U ) |
|
| 2 | ipass.4 | |- S = ( .sOLD ` U ) |
|
| 3 | ipass.7 | |- P = ( .iOLD ` U ) |
|
| 4 | cjcl | |- ( B e. CC -> ( * ` B ) e. CC ) |
|
| 5 | 1 2 3 | dipassr | |- ( ( U e. CPreHilOLD /\ ( A e. X /\ ( * ` B ) e. CC /\ C e. X ) ) -> ( A P ( ( * ` B ) S C ) ) = ( ( * ` ( * ` B ) ) x. ( A P C ) ) ) |
| 6 | 4 5 | syl3anr2 | |- ( ( U e. CPreHilOLD /\ ( A e. X /\ B e. CC /\ C e. X ) ) -> ( A P ( ( * ` B ) S C ) ) = ( ( * ` ( * ` B ) ) x. ( A P C ) ) ) |
| 7 | cjcj | |- ( B e. CC -> ( * ` ( * ` B ) ) = B ) |
|
| 8 | 7 | 3ad2ant2 | |- ( ( A e. X /\ B e. CC /\ C e. X ) -> ( * ` ( * ` B ) ) = B ) |
| 9 | 8 | adantl | |- ( ( U e. CPreHilOLD /\ ( A e. X /\ B e. CC /\ C e. X ) ) -> ( * ` ( * ` B ) ) = B ) |
| 10 | 9 | oveq1d | |- ( ( U e. CPreHilOLD /\ ( A e. X /\ B e. CC /\ C e. X ) ) -> ( ( * ` ( * ` B ) ) x. ( A P C ) ) = ( B x. ( A P C ) ) ) |
| 11 | 6 10 | eqtrd | |- ( ( U e. CPreHilOLD /\ ( A e. X /\ B e. CC /\ C e. X ) ) -> ( A P ( ( * ` B ) S C ) ) = ( B x. ( A P C ) ) ) |