This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Associative law for inner product. Equation I2 of Ponnusamy p. 363. (Contributed by NM, 25-Aug-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ipass.1 | |- X = ( BaseSet ` U ) |
|
| ipass.4 | |- S = ( .sOLD ` U ) |
||
| ipass.7 | |- P = ( .iOLD ` U ) |
||
| Assertion | dipass | |- ( ( U e. CPreHilOLD /\ ( A e. CC /\ B e. X /\ C e. X ) ) -> ( ( A S B ) P C ) = ( A x. ( B P C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ipass.1 | |- X = ( BaseSet ` U ) |
|
| 2 | ipass.4 | |- S = ( .sOLD ` U ) |
|
| 3 | ipass.7 | |- P = ( .iOLD ` U ) |
|
| 4 | fveq2 | |- ( U = if ( U e. CPreHilOLD , U , <. <. + , x. >. , abs >. ) -> ( BaseSet ` U ) = ( BaseSet ` if ( U e. CPreHilOLD , U , <. <. + , x. >. , abs >. ) ) ) |
|
| 5 | 1 4 | eqtrid | |- ( U = if ( U e. CPreHilOLD , U , <. <. + , x. >. , abs >. ) -> X = ( BaseSet ` if ( U e. CPreHilOLD , U , <. <. + , x. >. , abs >. ) ) ) |
| 6 | 5 | eleq2d | |- ( U = if ( U e. CPreHilOLD , U , <. <. + , x. >. , abs >. ) -> ( B e. X <-> B e. ( BaseSet ` if ( U e. CPreHilOLD , U , <. <. + , x. >. , abs >. ) ) ) ) |
| 7 | 5 | eleq2d | |- ( U = if ( U e. CPreHilOLD , U , <. <. + , x. >. , abs >. ) -> ( C e. X <-> C e. ( BaseSet ` if ( U e. CPreHilOLD , U , <. <. + , x. >. , abs >. ) ) ) ) |
| 8 | 6 7 | 3anbi23d | |- ( U = if ( U e. CPreHilOLD , U , <. <. + , x. >. , abs >. ) -> ( ( A e. CC /\ B e. X /\ C e. X ) <-> ( A e. CC /\ B e. ( BaseSet ` if ( U e. CPreHilOLD , U , <. <. + , x. >. , abs >. ) ) /\ C e. ( BaseSet ` if ( U e. CPreHilOLD , U , <. <. + , x. >. , abs >. ) ) ) ) ) |
| 9 | fveq2 | |- ( U = if ( U e. CPreHilOLD , U , <. <. + , x. >. , abs >. ) -> ( .sOLD ` U ) = ( .sOLD ` if ( U e. CPreHilOLD , U , <. <. + , x. >. , abs >. ) ) ) |
|
| 10 | 2 9 | eqtrid | |- ( U = if ( U e. CPreHilOLD , U , <. <. + , x. >. , abs >. ) -> S = ( .sOLD ` if ( U e. CPreHilOLD , U , <. <. + , x. >. , abs >. ) ) ) |
| 11 | 10 | oveqd | |- ( U = if ( U e. CPreHilOLD , U , <. <. + , x. >. , abs >. ) -> ( A S B ) = ( A ( .sOLD ` if ( U e. CPreHilOLD , U , <. <. + , x. >. , abs >. ) ) B ) ) |
| 12 | 11 | oveq1d | |- ( U = if ( U e. CPreHilOLD , U , <. <. + , x. >. , abs >. ) -> ( ( A S B ) P C ) = ( ( A ( .sOLD ` if ( U e. CPreHilOLD , U , <. <. + , x. >. , abs >. ) ) B ) P C ) ) |
| 13 | fveq2 | |- ( U = if ( U e. CPreHilOLD , U , <. <. + , x. >. , abs >. ) -> ( .iOLD ` U ) = ( .iOLD ` if ( U e. CPreHilOLD , U , <. <. + , x. >. , abs >. ) ) ) |
|
| 14 | 3 13 | eqtrid | |- ( U = if ( U e. CPreHilOLD , U , <. <. + , x. >. , abs >. ) -> P = ( .iOLD ` if ( U e. CPreHilOLD , U , <. <. + , x. >. , abs >. ) ) ) |
| 15 | 14 | oveqd | |- ( U = if ( U e. CPreHilOLD , U , <. <. + , x. >. , abs >. ) -> ( ( A ( .sOLD ` if ( U e. CPreHilOLD , U , <. <. + , x. >. , abs >. ) ) B ) P C ) = ( ( A ( .sOLD ` if ( U e. CPreHilOLD , U , <. <. + , x. >. , abs >. ) ) B ) ( .iOLD ` if ( U e. CPreHilOLD , U , <. <. + , x. >. , abs >. ) ) C ) ) |
| 16 | 12 15 | eqtrd | |- ( U = if ( U e. CPreHilOLD , U , <. <. + , x. >. , abs >. ) -> ( ( A S B ) P C ) = ( ( A ( .sOLD ` if ( U e. CPreHilOLD , U , <. <. + , x. >. , abs >. ) ) B ) ( .iOLD ` if ( U e. CPreHilOLD , U , <. <. + , x. >. , abs >. ) ) C ) ) |
| 17 | 14 | oveqd | |- ( U = if ( U e. CPreHilOLD , U , <. <. + , x. >. , abs >. ) -> ( B P C ) = ( B ( .iOLD ` if ( U e. CPreHilOLD , U , <. <. + , x. >. , abs >. ) ) C ) ) |
| 18 | 17 | oveq2d | |- ( U = if ( U e. CPreHilOLD , U , <. <. + , x. >. , abs >. ) -> ( A x. ( B P C ) ) = ( A x. ( B ( .iOLD ` if ( U e. CPreHilOLD , U , <. <. + , x. >. , abs >. ) ) C ) ) ) |
| 19 | 16 18 | eqeq12d | |- ( U = if ( U e. CPreHilOLD , U , <. <. + , x. >. , abs >. ) -> ( ( ( A S B ) P C ) = ( A x. ( B P C ) ) <-> ( ( A ( .sOLD ` if ( U e. CPreHilOLD , U , <. <. + , x. >. , abs >. ) ) B ) ( .iOLD ` if ( U e. CPreHilOLD , U , <. <. + , x. >. , abs >. ) ) C ) = ( A x. ( B ( .iOLD ` if ( U e. CPreHilOLD , U , <. <. + , x. >. , abs >. ) ) C ) ) ) ) |
| 20 | 8 19 | imbi12d | |- ( U = if ( U e. CPreHilOLD , U , <. <. + , x. >. , abs >. ) -> ( ( ( A e. CC /\ B e. X /\ C e. X ) -> ( ( A S B ) P C ) = ( A x. ( B P C ) ) ) <-> ( ( A e. CC /\ B e. ( BaseSet ` if ( U e. CPreHilOLD , U , <. <. + , x. >. , abs >. ) ) /\ C e. ( BaseSet ` if ( U e. CPreHilOLD , U , <. <. + , x. >. , abs >. ) ) ) -> ( ( A ( .sOLD ` if ( U e. CPreHilOLD , U , <. <. + , x. >. , abs >. ) ) B ) ( .iOLD ` if ( U e. CPreHilOLD , U , <. <. + , x. >. , abs >. ) ) C ) = ( A x. ( B ( .iOLD ` if ( U e. CPreHilOLD , U , <. <. + , x. >. , abs >. ) ) C ) ) ) ) ) |
| 21 | eqid | |- ( BaseSet ` if ( U e. CPreHilOLD , U , <. <. + , x. >. , abs >. ) ) = ( BaseSet ` if ( U e. CPreHilOLD , U , <. <. + , x. >. , abs >. ) ) |
|
| 22 | eqid | |- ( +v ` if ( U e. CPreHilOLD , U , <. <. + , x. >. , abs >. ) ) = ( +v ` if ( U e. CPreHilOLD , U , <. <. + , x. >. , abs >. ) ) |
|
| 23 | eqid | |- ( .sOLD ` if ( U e. CPreHilOLD , U , <. <. + , x. >. , abs >. ) ) = ( .sOLD ` if ( U e. CPreHilOLD , U , <. <. + , x. >. , abs >. ) ) |
|
| 24 | eqid | |- ( .iOLD ` if ( U e. CPreHilOLD , U , <. <. + , x. >. , abs >. ) ) = ( .iOLD ` if ( U e. CPreHilOLD , U , <. <. + , x. >. , abs >. ) ) |
|
| 25 | elimphu | |- if ( U e. CPreHilOLD , U , <. <. + , x. >. , abs >. ) e. CPreHilOLD |
|
| 26 | 21 22 23 24 25 | ipassi | |- ( ( A e. CC /\ B e. ( BaseSet ` if ( U e. CPreHilOLD , U , <. <. + , x. >. , abs >. ) ) /\ C e. ( BaseSet ` if ( U e. CPreHilOLD , U , <. <. + , x. >. , abs >. ) ) ) -> ( ( A ( .sOLD ` if ( U e. CPreHilOLD , U , <. <. + , x. >. , abs >. ) ) B ) ( .iOLD ` if ( U e. CPreHilOLD , U , <. <. + , x. >. , abs >. ) ) C ) = ( A x. ( B ( .iOLD ` if ( U e. CPreHilOLD , U , <. <. + , x. >. , abs >. ) ) C ) ) ) |
| 27 | 20 26 | dedth | |- ( U e. CPreHilOLD -> ( ( A e. CC /\ B e. X /\ C e. X ) -> ( ( A S B ) P C ) = ( A x. ( B P C ) ) ) ) |
| 28 | 27 | imp | |- ( ( U e. CPreHilOLD /\ ( A e. CC /\ B e. X /\ C e. X ) ) -> ( ( A S B ) P C ) = ( A x. ( B P C ) ) ) |