This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distributive law for inner product subtraction. (Contributed by NM, 20-Nov-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ipsubdir.1 | |- X = ( BaseSet ` U ) |
|
| ipsubdir.3 | |- M = ( -v ` U ) |
||
| ipsubdir.7 | |- P = ( .iOLD ` U ) |
||
| Assertion | dipsubdir | |- ( ( U e. CPreHilOLD /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( A M B ) P C ) = ( ( A P C ) - ( B P C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ipsubdir.1 | |- X = ( BaseSet ` U ) |
|
| 2 | ipsubdir.3 | |- M = ( -v ` U ) |
|
| 3 | ipsubdir.7 | |- P = ( .iOLD ` U ) |
|
| 4 | idd | |- ( U e. CPreHilOLD -> ( A e. X -> A e. X ) ) |
|
| 5 | phnv | |- ( U e. CPreHilOLD -> U e. NrmCVec ) |
|
| 6 | neg1cn | |- -u 1 e. CC |
|
| 7 | eqid | |- ( .sOLD ` U ) = ( .sOLD ` U ) |
|
| 8 | 1 7 | nvscl | |- ( ( U e. NrmCVec /\ -u 1 e. CC /\ B e. X ) -> ( -u 1 ( .sOLD ` U ) B ) e. X ) |
| 9 | 6 8 | mp3an2 | |- ( ( U e. NrmCVec /\ B e. X ) -> ( -u 1 ( .sOLD ` U ) B ) e. X ) |
| 10 | 5 9 | sylan | |- ( ( U e. CPreHilOLD /\ B e. X ) -> ( -u 1 ( .sOLD ` U ) B ) e. X ) |
| 11 | 10 | ex | |- ( U e. CPreHilOLD -> ( B e. X -> ( -u 1 ( .sOLD ` U ) B ) e. X ) ) |
| 12 | idd | |- ( U e. CPreHilOLD -> ( C e. X -> C e. X ) ) |
|
| 13 | 4 11 12 | 3anim123d | |- ( U e. CPreHilOLD -> ( ( A e. X /\ B e. X /\ C e. X ) -> ( A e. X /\ ( -u 1 ( .sOLD ` U ) B ) e. X /\ C e. X ) ) ) |
| 14 | 13 | imp | |- ( ( U e. CPreHilOLD /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( A e. X /\ ( -u 1 ( .sOLD ` U ) B ) e. X /\ C e. X ) ) |
| 15 | eqid | |- ( +v ` U ) = ( +v ` U ) |
|
| 16 | 1 15 3 | dipdir | |- ( ( U e. CPreHilOLD /\ ( A e. X /\ ( -u 1 ( .sOLD ` U ) B ) e. X /\ C e. X ) ) -> ( ( A ( +v ` U ) ( -u 1 ( .sOLD ` U ) B ) ) P C ) = ( ( A P C ) + ( ( -u 1 ( .sOLD ` U ) B ) P C ) ) ) |
| 17 | 14 16 | syldan | |- ( ( U e. CPreHilOLD /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( A ( +v ` U ) ( -u 1 ( .sOLD ` U ) B ) ) P C ) = ( ( A P C ) + ( ( -u 1 ( .sOLD ` U ) B ) P C ) ) ) |
| 18 | 1 15 7 2 | nvmval | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( A M B ) = ( A ( +v ` U ) ( -u 1 ( .sOLD ` U ) B ) ) ) |
| 19 | 5 18 | syl3an1 | |- ( ( U e. CPreHilOLD /\ A e. X /\ B e. X ) -> ( A M B ) = ( A ( +v ` U ) ( -u 1 ( .sOLD ` U ) B ) ) ) |
| 20 | 19 | 3adant3r3 | |- ( ( U e. CPreHilOLD /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( A M B ) = ( A ( +v ` U ) ( -u 1 ( .sOLD ` U ) B ) ) ) |
| 21 | 20 | oveq1d | |- ( ( U e. CPreHilOLD /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( A M B ) P C ) = ( ( A ( +v ` U ) ( -u 1 ( .sOLD ` U ) B ) ) P C ) ) |
| 22 | 1 7 3 | dipass | |- ( ( U e. CPreHilOLD /\ ( -u 1 e. CC /\ B e. X /\ C e. X ) ) -> ( ( -u 1 ( .sOLD ` U ) B ) P C ) = ( -u 1 x. ( B P C ) ) ) |
| 23 | 6 22 | mp3anr1 | |- ( ( U e. CPreHilOLD /\ ( B e. X /\ C e. X ) ) -> ( ( -u 1 ( .sOLD ` U ) B ) P C ) = ( -u 1 x. ( B P C ) ) ) |
| 24 | 1 3 | dipcl | |- ( ( U e. NrmCVec /\ B e. X /\ C e. X ) -> ( B P C ) e. CC ) |
| 25 | 24 | 3expb | |- ( ( U e. NrmCVec /\ ( B e. X /\ C e. X ) ) -> ( B P C ) e. CC ) |
| 26 | 5 25 | sylan | |- ( ( U e. CPreHilOLD /\ ( B e. X /\ C e. X ) ) -> ( B P C ) e. CC ) |
| 27 | 26 | mulm1d | |- ( ( U e. CPreHilOLD /\ ( B e. X /\ C e. X ) ) -> ( -u 1 x. ( B P C ) ) = -u ( B P C ) ) |
| 28 | 23 27 | eqtrd | |- ( ( U e. CPreHilOLD /\ ( B e. X /\ C e. X ) ) -> ( ( -u 1 ( .sOLD ` U ) B ) P C ) = -u ( B P C ) ) |
| 29 | 28 | 3adantr1 | |- ( ( U e. CPreHilOLD /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( -u 1 ( .sOLD ` U ) B ) P C ) = -u ( B P C ) ) |
| 30 | 29 | oveq2d | |- ( ( U e. CPreHilOLD /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( A P C ) + ( ( -u 1 ( .sOLD ` U ) B ) P C ) ) = ( ( A P C ) + -u ( B P C ) ) ) |
| 31 | 1 3 | dipcl | |- ( ( U e. NrmCVec /\ A e. X /\ C e. X ) -> ( A P C ) e. CC ) |
| 32 | 31 | 3adant3r2 | |- ( ( U e. NrmCVec /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( A P C ) e. CC ) |
| 33 | 24 | 3adant3r1 | |- ( ( U e. NrmCVec /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( B P C ) e. CC ) |
| 34 | 32 33 | negsubd | |- ( ( U e. NrmCVec /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( A P C ) + -u ( B P C ) ) = ( ( A P C ) - ( B P C ) ) ) |
| 35 | 5 34 | sylan | |- ( ( U e. CPreHilOLD /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( A P C ) + -u ( B P C ) ) = ( ( A P C ) - ( B P C ) ) ) |
| 36 | 30 35 | eqtr2d | |- ( ( U e. CPreHilOLD /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( A P C ) - ( B P C ) ) = ( ( A P C ) + ( ( -u 1 ( .sOLD ` U ) B ) P C ) ) ) |
| 37 | 17 21 36 | 3eqtr4d | |- ( ( U e. CPreHilOLD /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( A M B ) P C ) = ( ( A P C ) - ( B P C ) ) ) |