This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for sii . (Contributed by NM, 24-Nov-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | siii.1 | |- X = ( BaseSet ` U ) |
|
| siii.6 | |- N = ( normCV ` U ) |
||
| siii.7 | |- P = ( .iOLD ` U ) |
||
| siii.9 | |- U e. CPreHilOLD |
||
| siii.a | |- A e. X |
||
| siii.b | |- B e. X |
||
| siii2.3 | |- M = ( -v ` U ) |
||
| siii2.4 | |- S = ( .sOLD ` U ) |
||
| Assertion | siilem2 | |- ( ( C e. CC /\ ( C x. ( A P B ) ) e. RR /\ 0 <_ ( C x. ( A P B ) ) ) -> ( ( B P A ) = ( C x. ( ( N ` B ) ^ 2 ) ) -> ( sqrt ` ( ( A P B ) x. ( C x. ( ( N ` B ) ^ 2 ) ) ) ) <_ ( ( N ` A ) x. ( N ` B ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | siii.1 | |- X = ( BaseSet ` U ) |
|
| 2 | siii.6 | |- N = ( normCV ` U ) |
|
| 3 | siii.7 | |- P = ( .iOLD ` U ) |
|
| 4 | siii.9 | |- U e. CPreHilOLD |
|
| 5 | siii.a | |- A e. X |
|
| 6 | siii.b | |- B e. X |
|
| 7 | siii2.3 | |- M = ( -v ` U ) |
|
| 8 | siii2.4 | |- S = ( .sOLD ` U ) |
|
| 9 | oveq1 | |- ( C = if ( ( C e. CC /\ ( C x. ( A P B ) ) e. RR /\ 0 <_ ( C x. ( A P B ) ) ) , C , 0 ) -> ( C x. ( ( N ` B ) ^ 2 ) ) = ( if ( ( C e. CC /\ ( C x. ( A P B ) ) e. RR /\ 0 <_ ( C x. ( A P B ) ) ) , C , 0 ) x. ( ( N ` B ) ^ 2 ) ) ) |
|
| 10 | 9 | eqeq2d | |- ( C = if ( ( C e. CC /\ ( C x. ( A P B ) ) e. RR /\ 0 <_ ( C x. ( A P B ) ) ) , C , 0 ) -> ( ( B P A ) = ( C x. ( ( N ` B ) ^ 2 ) ) <-> ( B P A ) = ( if ( ( C e. CC /\ ( C x. ( A P B ) ) e. RR /\ 0 <_ ( C x. ( A P B ) ) ) , C , 0 ) x. ( ( N ` B ) ^ 2 ) ) ) ) |
| 11 | 9 | oveq2d | |- ( C = if ( ( C e. CC /\ ( C x. ( A P B ) ) e. RR /\ 0 <_ ( C x. ( A P B ) ) ) , C , 0 ) -> ( ( A P B ) x. ( C x. ( ( N ` B ) ^ 2 ) ) ) = ( ( A P B ) x. ( if ( ( C e. CC /\ ( C x. ( A P B ) ) e. RR /\ 0 <_ ( C x. ( A P B ) ) ) , C , 0 ) x. ( ( N ` B ) ^ 2 ) ) ) ) |
| 12 | 11 | fveq2d | |- ( C = if ( ( C e. CC /\ ( C x. ( A P B ) ) e. RR /\ 0 <_ ( C x. ( A P B ) ) ) , C , 0 ) -> ( sqrt ` ( ( A P B ) x. ( C x. ( ( N ` B ) ^ 2 ) ) ) ) = ( sqrt ` ( ( A P B ) x. ( if ( ( C e. CC /\ ( C x. ( A P B ) ) e. RR /\ 0 <_ ( C x. ( A P B ) ) ) , C , 0 ) x. ( ( N ` B ) ^ 2 ) ) ) ) ) |
| 13 | 12 | breq1d | |- ( C = if ( ( C e. CC /\ ( C x. ( A P B ) ) e. RR /\ 0 <_ ( C x. ( A P B ) ) ) , C , 0 ) -> ( ( sqrt ` ( ( A P B ) x. ( C x. ( ( N ` B ) ^ 2 ) ) ) ) <_ ( ( N ` A ) x. ( N ` B ) ) <-> ( sqrt ` ( ( A P B ) x. ( if ( ( C e. CC /\ ( C x. ( A P B ) ) e. RR /\ 0 <_ ( C x. ( A P B ) ) ) , C , 0 ) x. ( ( N ` B ) ^ 2 ) ) ) ) <_ ( ( N ` A ) x. ( N ` B ) ) ) ) |
| 14 | 10 13 | imbi12d | |- ( C = if ( ( C e. CC /\ ( C x. ( A P B ) ) e. RR /\ 0 <_ ( C x. ( A P B ) ) ) , C , 0 ) -> ( ( ( B P A ) = ( C x. ( ( N ` B ) ^ 2 ) ) -> ( sqrt ` ( ( A P B ) x. ( C x. ( ( N ` B ) ^ 2 ) ) ) ) <_ ( ( N ` A ) x. ( N ` B ) ) ) <-> ( ( B P A ) = ( if ( ( C e. CC /\ ( C x. ( A P B ) ) e. RR /\ 0 <_ ( C x. ( A P B ) ) ) , C , 0 ) x. ( ( N ` B ) ^ 2 ) ) -> ( sqrt ` ( ( A P B ) x. ( if ( ( C e. CC /\ ( C x. ( A P B ) ) e. RR /\ 0 <_ ( C x. ( A P B ) ) ) , C , 0 ) x. ( ( N ` B ) ^ 2 ) ) ) ) <_ ( ( N ` A ) x. ( N ` B ) ) ) ) ) |
| 15 | eleq1 | |- ( C = if ( ( C e. CC /\ ( C x. ( A P B ) ) e. RR /\ 0 <_ ( C x. ( A P B ) ) ) , C , 0 ) -> ( C e. CC <-> if ( ( C e. CC /\ ( C x. ( A P B ) ) e. RR /\ 0 <_ ( C x. ( A P B ) ) ) , C , 0 ) e. CC ) ) |
|
| 16 | oveq1 | |- ( C = if ( ( C e. CC /\ ( C x. ( A P B ) ) e. RR /\ 0 <_ ( C x. ( A P B ) ) ) , C , 0 ) -> ( C x. ( A P B ) ) = ( if ( ( C e. CC /\ ( C x. ( A P B ) ) e. RR /\ 0 <_ ( C x. ( A P B ) ) ) , C , 0 ) x. ( A P B ) ) ) |
|
| 17 | 16 | eleq1d | |- ( C = if ( ( C e. CC /\ ( C x. ( A P B ) ) e. RR /\ 0 <_ ( C x. ( A P B ) ) ) , C , 0 ) -> ( ( C x. ( A P B ) ) e. RR <-> ( if ( ( C e. CC /\ ( C x. ( A P B ) ) e. RR /\ 0 <_ ( C x. ( A P B ) ) ) , C , 0 ) x. ( A P B ) ) e. RR ) ) |
| 18 | 16 | breq2d | |- ( C = if ( ( C e. CC /\ ( C x. ( A P B ) ) e. RR /\ 0 <_ ( C x. ( A P B ) ) ) , C , 0 ) -> ( 0 <_ ( C x. ( A P B ) ) <-> 0 <_ ( if ( ( C e. CC /\ ( C x. ( A P B ) ) e. RR /\ 0 <_ ( C x. ( A P B ) ) ) , C , 0 ) x. ( A P B ) ) ) ) |
| 19 | 15 17 18 | 3anbi123d | |- ( C = if ( ( C e. CC /\ ( C x. ( A P B ) ) e. RR /\ 0 <_ ( C x. ( A P B ) ) ) , C , 0 ) -> ( ( C e. CC /\ ( C x. ( A P B ) ) e. RR /\ 0 <_ ( C x. ( A P B ) ) ) <-> ( if ( ( C e. CC /\ ( C x. ( A P B ) ) e. RR /\ 0 <_ ( C x. ( A P B ) ) ) , C , 0 ) e. CC /\ ( if ( ( C e. CC /\ ( C x. ( A P B ) ) e. RR /\ 0 <_ ( C x. ( A P B ) ) ) , C , 0 ) x. ( A P B ) ) e. RR /\ 0 <_ ( if ( ( C e. CC /\ ( C x. ( A P B ) ) e. RR /\ 0 <_ ( C x. ( A P B ) ) ) , C , 0 ) x. ( A P B ) ) ) ) ) |
| 20 | eleq1 | |- ( 0 = if ( ( C e. CC /\ ( C x. ( A P B ) ) e. RR /\ 0 <_ ( C x. ( A P B ) ) ) , C , 0 ) -> ( 0 e. CC <-> if ( ( C e. CC /\ ( C x. ( A P B ) ) e. RR /\ 0 <_ ( C x. ( A P B ) ) ) , C , 0 ) e. CC ) ) |
|
| 21 | oveq1 | |- ( 0 = if ( ( C e. CC /\ ( C x. ( A P B ) ) e. RR /\ 0 <_ ( C x. ( A P B ) ) ) , C , 0 ) -> ( 0 x. ( A P B ) ) = ( if ( ( C e. CC /\ ( C x. ( A P B ) ) e. RR /\ 0 <_ ( C x. ( A P B ) ) ) , C , 0 ) x. ( A P B ) ) ) |
|
| 22 | 21 | eleq1d | |- ( 0 = if ( ( C e. CC /\ ( C x. ( A P B ) ) e. RR /\ 0 <_ ( C x. ( A P B ) ) ) , C , 0 ) -> ( ( 0 x. ( A P B ) ) e. RR <-> ( if ( ( C e. CC /\ ( C x. ( A P B ) ) e. RR /\ 0 <_ ( C x. ( A P B ) ) ) , C , 0 ) x. ( A P B ) ) e. RR ) ) |
| 23 | 21 | breq2d | |- ( 0 = if ( ( C e. CC /\ ( C x. ( A P B ) ) e. RR /\ 0 <_ ( C x. ( A P B ) ) ) , C , 0 ) -> ( 0 <_ ( 0 x. ( A P B ) ) <-> 0 <_ ( if ( ( C e. CC /\ ( C x. ( A P B ) ) e. RR /\ 0 <_ ( C x. ( A P B ) ) ) , C , 0 ) x. ( A P B ) ) ) ) |
| 24 | 20 22 23 | 3anbi123d | |- ( 0 = if ( ( C e. CC /\ ( C x. ( A P B ) ) e. RR /\ 0 <_ ( C x. ( A P B ) ) ) , C , 0 ) -> ( ( 0 e. CC /\ ( 0 x. ( A P B ) ) e. RR /\ 0 <_ ( 0 x. ( A P B ) ) ) <-> ( if ( ( C e. CC /\ ( C x. ( A P B ) ) e. RR /\ 0 <_ ( C x. ( A P B ) ) ) , C , 0 ) e. CC /\ ( if ( ( C e. CC /\ ( C x. ( A P B ) ) e. RR /\ 0 <_ ( C x. ( A P B ) ) ) , C , 0 ) x. ( A P B ) ) e. RR /\ 0 <_ ( if ( ( C e. CC /\ ( C x. ( A P B ) ) e. RR /\ 0 <_ ( C x. ( A P B ) ) ) , C , 0 ) x. ( A P B ) ) ) ) ) |
| 25 | 0cn | |- 0 e. CC |
|
| 26 | 4 | phnvi | |- U e. NrmCVec |
| 27 | 1 3 | dipcl | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( A P B ) e. CC ) |
| 28 | 26 5 6 27 | mp3an | |- ( A P B ) e. CC |
| 29 | 28 | mul02i | |- ( 0 x. ( A P B ) ) = 0 |
| 30 | 0re | |- 0 e. RR |
|
| 31 | 29 30 | eqeltri | |- ( 0 x. ( A P B ) ) e. RR |
| 32 | 0le0 | |- 0 <_ 0 |
|
| 33 | 32 29 | breqtrri | |- 0 <_ ( 0 x. ( A P B ) ) |
| 34 | 25 31 33 | 3pm3.2i | |- ( 0 e. CC /\ ( 0 x. ( A P B ) ) e. RR /\ 0 <_ ( 0 x. ( A P B ) ) ) |
| 35 | 19 24 34 | elimhyp | |- ( if ( ( C e. CC /\ ( C x. ( A P B ) ) e. RR /\ 0 <_ ( C x. ( A P B ) ) ) , C , 0 ) e. CC /\ ( if ( ( C e. CC /\ ( C x. ( A P B ) ) e. RR /\ 0 <_ ( C x. ( A P B ) ) ) , C , 0 ) x. ( A P B ) ) e. RR /\ 0 <_ ( if ( ( C e. CC /\ ( C x. ( A P B ) ) e. RR /\ 0 <_ ( C x. ( A P B ) ) ) , C , 0 ) x. ( A P B ) ) ) |
| 36 | 35 | simp1i | |- if ( ( C e. CC /\ ( C x. ( A P B ) ) e. RR /\ 0 <_ ( C x. ( A P B ) ) ) , C , 0 ) e. CC |
| 37 | 35 | simp2i | |- ( if ( ( C e. CC /\ ( C x. ( A P B ) ) e. RR /\ 0 <_ ( C x. ( A P B ) ) ) , C , 0 ) x. ( A P B ) ) e. RR |
| 38 | 35 | simp3i | |- 0 <_ ( if ( ( C e. CC /\ ( C x. ( A P B ) ) e. RR /\ 0 <_ ( C x. ( A P B ) ) ) , C , 0 ) x. ( A P B ) ) |
| 39 | 1 2 3 4 5 6 7 8 36 37 38 | siilem1 | |- ( ( B P A ) = ( if ( ( C e. CC /\ ( C x. ( A P B ) ) e. RR /\ 0 <_ ( C x. ( A P B ) ) ) , C , 0 ) x. ( ( N ` B ) ^ 2 ) ) -> ( sqrt ` ( ( A P B ) x. ( if ( ( C e. CC /\ ( C x. ( A P B ) ) e. RR /\ 0 <_ ( C x. ( A P B ) ) ) , C , 0 ) x. ( ( N ` B ) ^ 2 ) ) ) ) <_ ( ( N ` A ) x. ( N ` B ) ) ) |
| 40 | 14 39 | dedth | |- ( ( C e. CC /\ ( C x. ( A P B ) ) e. RR /\ 0 <_ ( C x. ( A P B ) ) ) -> ( ( B P A ) = ( C x. ( ( N ` B ) ^ 2 ) ) -> ( sqrt ` ( ( A P B ) x. ( C x. ( ( N ` B ) ^ 2 ) ) ) ) <_ ( ( N ` A ) x. ( N ` B ) ) ) ) |