This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Rearrangement of 4 terms in a subtraction. (Contributed by NM, 23-Nov-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sub4 | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( A - B ) - ( C - D ) ) = ( ( A - C ) - ( B - D ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addcom | |- ( ( B e. CC /\ C e. CC ) -> ( B + C ) = ( C + B ) ) |
|
| 2 | 1 | ad2ant2lr | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( B + C ) = ( C + B ) ) |
| 3 | 2 | oveq2d | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( A + D ) - ( B + C ) ) = ( ( A + D ) - ( C + B ) ) ) |
| 4 | subadd4 | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( A - B ) - ( C - D ) ) = ( ( A + D ) - ( B + C ) ) ) |
|
| 5 | subadd4 | |- ( ( ( A e. CC /\ C e. CC ) /\ ( B e. CC /\ D e. CC ) ) -> ( ( A - C ) - ( B - D ) ) = ( ( A + D ) - ( C + B ) ) ) |
|
| 6 | 5 | an4s | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( A - C ) - ( B - D ) ) = ( ( A + D ) - ( C + B ) ) ) |
| 7 | 3 4 6 | 3eqtr4d | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( A - B ) - ( C - D ) ) = ( ( A - C ) - ( B - D ) ) ) |