This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Inference from sii . (Contributed by NM, 20-Nov-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | siii.1 | |- X = ( BaseSet ` U ) |
|
| siii.6 | |- N = ( normCV ` U ) |
||
| siii.7 | |- P = ( .iOLD ` U ) |
||
| siii.9 | |- U e. CPreHilOLD |
||
| siii.a | |- A e. X |
||
| siii.b | |- B e. X |
||
| Assertion | siii | |- ( abs ` ( A P B ) ) <_ ( ( N ` A ) x. ( N ` B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | siii.1 | |- X = ( BaseSet ` U ) |
|
| 2 | siii.6 | |- N = ( normCV ` U ) |
|
| 3 | siii.7 | |- P = ( .iOLD ` U ) |
|
| 4 | siii.9 | |- U e. CPreHilOLD |
|
| 5 | siii.a | |- A e. X |
|
| 6 | siii.b | |- B e. X |
|
| 7 | oveq2 | |- ( B = ( 0vec ` U ) -> ( A P B ) = ( A P ( 0vec ` U ) ) ) |
|
| 8 | 4 | phnvi | |- U e. NrmCVec |
| 9 | eqid | |- ( 0vec ` U ) = ( 0vec ` U ) |
|
| 10 | 1 9 3 | dip0r | |- ( ( U e. NrmCVec /\ A e. X ) -> ( A P ( 0vec ` U ) ) = 0 ) |
| 11 | 8 5 10 | mp2an | |- ( A P ( 0vec ` U ) ) = 0 |
| 12 | 7 11 | eqtrdi | |- ( B = ( 0vec ` U ) -> ( A P B ) = 0 ) |
| 13 | 12 | abs00bd | |- ( B = ( 0vec ` U ) -> ( abs ` ( A P B ) ) = 0 ) |
| 14 | 1 2 | nvge0 | |- ( ( U e. NrmCVec /\ A e. X ) -> 0 <_ ( N ` A ) ) |
| 15 | 8 5 14 | mp2an | |- 0 <_ ( N ` A ) |
| 16 | 1 2 | nvge0 | |- ( ( U e. NrmCVec /\ B e. X ) -> 0 <_ ( N ` B ) ) |
| 17 | 8 6 16 | mp2an | |- 0 <_ ( N ` B ) |
| 18 | 1 2 8 5 | nvcli | |- ( N ` A ) e. RR |
| 19 | 1 2 8 6 | nvcli | |- ( N ` B ) e. RR |
| 20 | 18 19 | mulge0i | |- ( ( 0 <_ ( N ` A ) /\ 0 <_ ( N ` B ) ) -> 0 <_ ( ( N ` A ) x. ( N ` B ) ) ) |
| 21 | 15 17 20 | mp2an | |- 0 <_ ( ( N ` A ) x. ( N ` B ) ) |
| 22 | 13 21 | eqbrtrdi | |- ( B = ( 0vec ` U ) -> ( abs ` ( A P B ) ) <_ ( ( N ` A ) x. ( N ` B ) ) ) |
| 23 | 1 3 | dipcl | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( A P B ) e. CC ) |
| 24 | 8 5 6 23 | mp3an | |- ( A P B ) e. CC |
| 25 | absval | |- ( ( A P B ) e. CC -> ( abs ` ( A P B ) ) = ( sqrt ` ( ( A P B ) x. ( * ` ( A P B ) ) ) ) ) |
|
| 26 | 24 25 | ax-mp | |- ( abs ` ( A P B ) ) = ( sqrt ` ( ( A P B ) x. ( * ` ( A P B ) ) ) ) |
| 27 | 19 | recni | |- ( N ` B ) e. CC |
| 28 | 27 | sqeq0i | |- ( ( ( N ` B ) ^ 2 ) = 0 <-> ( N ` B ) = 0 ) |
| 29 | 1 9 2 | nvz | |- ( ( U e. NrmCVec /\ B e. X ) -> ( ( N ` B ) = 0 <-> B = ( 0vec ` U ) ) ) |
| 30 | 8 6 29 | mp2an | |- ( ( N ` B ) = 0 <-> B = ( 0vec ` U ) ) |
| 31 | 28 30 | bitri | |- ( ( ( N ` B ) ^ 2 ) = 0 <-> B = ( 0vec ` U ) ) |
| 32 | 31 | necon3bii | |- ( ( ( N ` B ) ^ 2 ) =/= 0 <-> B =/= ( 0vec ` U ) ) |
| 33 | 1 3 | dipcl | |- ( ( U e. NrmCVec /\ B e. X /\ A e. X ) -> ( B P A ) e. CC ) |
| 34 | 8 6 5 33 | mp3an | |- ( B P A ) e. CC |
| 35 | 19 | resqcli | |- ( ( N ` B ) ^ 2 ) e. RR |
| 36 | 35 | recni | |- ( ( N ` B ) ^ 2 ) e. CC |
| 37 | 34 36 | divcan1zi | |- ( ( ( N ` B ) ^ 2 ) =/= 0 -> ( ( ( B P A ) / ( ( N ` B ) ^ 2 ) ) x. ( ( N ` B ) ^ 2 ) ) = ( B P A ) ) |
| 38 | 32 37 | sylbir | |- ( B =/= ( 0vec ` U ) -> ( ( ( B P A ) / ( ( N ` B ) ^ 2 ) ) x. ( ( N ` B ) ^ 2 ) ) = ( B P A ) ) |
| 39 | 1 3 | dipcj | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( * ` ( A P B ) ) = ( B P A ) ) |
| 40 | 8 5 6 39 | mp3an | |- ( * ` ( A P B ) ) = ( B P A ) |
| 41 | 38 40 | eqtr4di | |- ( B =/= ( 0vec ` U ) -> ( ( ( B P A ) / ( ( N ` B ) ^ 2 ) ) x. ( ( N ` B ) ^ 2 ) ) = ( * ` ( A P B ) ) ) |
| 42 | 41 | oveq2d | |- ( B =/= ( 0vec ` U ) -> ( ( A P B ) x. ( ( ( B P A ) / ( ( N ` B ) ^ 2 ) ) x. ( ( N ` B ) ^ 2 ) ) ) = ( ( A P B ) x. ( * ` ( A P B ) ) ) ) |
| 43 | 42 | fveq2d | |- ( B =/= ( 0vec ` U ) -> ( sqrt ` ( ( A P B ) x. ( ( ( B P A ) / ( ( N ` B ) ^ 2 ) ) x. ( ( N ` B ) ^ 2 ) ) ) ) = ( sqrt ` ( ( A P B ) x. ( * ` ( A P B ) ) ) ) ) |
| 44 | 26 43 | eqtr4id | |- ( B =/= ( 0vec ` U ) -> ( abs ` ( A P B ) ) = ( sqrt ` ( ( A P B ) x. ( ( ( B P A ) / ( ( N ` B ) ^ 2 ) ) x. ( ( N ` B ) ^ 2 ) ) ) ) ) |
| 45 | 38 | eqcomd | |- ( B =/= ( 0vec ` U ) -> ( B P A ) = ( ( ( B P A ) / ( ( N ` B ) ^ 2 ) ) x. ( ( N ` B ) ^ 2 ) ) ) |
| 46 | 34 36 | divclzi | |- ( ( ( N ` B ) ^ 2 ) =/= 0 -> ( ( B P A ) / ( ( N ` B ) ^ 2 ) ) e. CC ) |
| 47 | 32 46 | sylbir | |- ( B =/= ( 0vec ` U ) -> ( ( B P A ) / ( ( N ` B ) ^ 2 ) ) e. CC ) |
| 48 | div23 | |- ( ( ( B P A ) e. CC /\ ( A P B ) e. CC /\ ( ( ( N ` B ) ^ 2 ) e. CC /\ ( ( N ` B ) ^ 2 ) =/= 0 ) ) -> ( ( ( B P A ) x. ( A P B ) ) / ( ( N ` B ) ^ 2 ) ) = ( ( ( B P A ) / ( ( N ` B ) ^ 2 ) ) x. ( A P B ) ) ) |
|
| 49 | 34 24 48 | mp3an12 | |- ( ( ( ( N ` B ) ^ 2 ) e. CC /\ ( ( N ` B ) ^ 2 ) =/= 0 ) -> ( ( ( B P A ) x. ( A P B ) ) / ( ( N ` B ) ^ 2 ) ) = ( ( ( B P A ) / ( ( N ` B ) ^ 2 ) ) x. ( A P B ) ) ) |
| 50 | 36 49 | mpan | |- ( ( ( N ` B ) ^ 2 ) =/= 0 -> ( ( ( B P A ) x. ( A P B ) ) / ( ( N ` B ) ^ 2 ) ) = ( ( ( B P A ) / ( ( N ` B ) ^ 2 ) ) x. ( A P B ) ) ) |
| 51 | 32 50 | sylbir | |- ( B =/= ( 0vec ` U ) -> ( ( ( B P A ) x. ( A P B ) ) / ( ( N ` B ) ^ 2 ) ) = ( ( ( B P A ) / ( ( N ` B ) ^ 2 ) ) x. ( A P B ) ) ) |
| 52 | 1 3 | ipipcj | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( A P B ) x. ( B P A ) ) = ( ( abs ` ( A P B ) ) ^ 2 ) ) |
| 53 | 8 5 6 52 | mp3an | |- ( ( A P B ) x. ( B P A ) ) = ( ( abs ` ( A P B ) ) ^ 2 ) |
| 54 | 24 34 53 | mulcomli | |- ( ( B P A ) x. ( A P B ) ) = ( ( abs ` ( A P B ) ) ^ 2 ) |
| 55 | 54 | oveq1i | |- ( ( ( B P A ) x. ( A P B ) ) / ( ( N ` B ) ^ 2 ) ) = ( ( ( abs ` ( A P B ) ) ^ 2 ) / ( ( N ` B ) ^ 2 ) ) |
| 56 | 51 55 | eqtr3di | |- ( B =/= ( 0vec ` U ) -> ( ( ( B P A ) / ( ( N ` B ) ^ 2 ) ) x. ( A P B ) ) = ( ( ( abs ` ( A P B ) ) ^ 2 ) / ( ( N ` B ) ^ 2 ) ) ) |
| 57 | 24 | abscli | |- ( abs ` ( A P B ) ) e. RR |
| 58 | 57 | resqcli | |- ( ( abs ` ( A P B ) ) ^ 2 ) e. RR |
| 59 | 58 35 | redivclzi | |- ( ( ( N ` B ) ^ 2 ) =/= 0 -> ( ( ( abs ` ( A P B ) ) ^ 2 ) / ( ( N ` B ) ^ 2 ) ) e. RR ) |
| 60 | 32 59 | sylbir | |- ( B =/= ( 0vec ` U ) -> ( ( ( abs ` ( A P B ) ) ^ 2 ) / ( ( N ` B ) ^ 2 ) ) e. RR ) |
| 61 | 56 60 | eqeltrd | |- ( B =/= ( 0vec ` U ) -> ( ( ( B P A ) / ( ( N ` B ) ^ 2 ) ) x. ( A P B ) ) e. RR ) |
| 62 | 30 | necon3bii | |- ( ( N ` B ) =/= 0 <-> B =/= ( 0vec ` U ) ) |
| 63 | 19 | sqgt0i | |- ( ( N ` B ) =/= 0 -> 0 < ( ( N ` B ) ^ 2 ) ) |
| 64 | 62 63 | sylbir | |- ( B =/= ( 0vec ` U ) -> 0 < ( ( N ` B ) ^ 2 ) ) |
| 65 | 57 | sqge0i | |- 0 <_ ( ( abs ` ( A P B ) ) ^ 2 ) |
| 66 | divge0 | |- ( ( ( ( ( abs ` ( A P B ) ) ^ 2 ) e. RR /\ 0 <_ ( ( abs ` ( A P B ) ) ^ 2 ) ) /\ ( ( ( N ` B ) ^ 2 ) e. RR /\ 0 < ( ( N ` B ) ^ 2 ) ) ) -> 0 <_ ( ( ( abs ` ( A P B ) ) ^ 2 ) / ( ( N ` B ) ^ 2 ) ) ) |
|
| 67 | 58 65 66 | mpanl12 | |- ( ( ( ( N ` B ) ^ 2 ) e. RR /\ 0 < ( ( N ` B ) ^ 2 ) ) -> 0 <_ ( ( ( abs ` ( A P B ) ) ^ 2 ) / ( ( N ` B ) ^ 2 ) ) ) |
| 68 | 35 64 67 | sylancr | |- ( B =/= ( 0vec ` U ) -> 0 <_ ( ( ( abs ` ( A P B ) ) ^ 2 ) / ( ( N ` B ) ^ 2 ) ) ) |
| 69 | 68 56 | breqtrrd | |- ( B =/= ( 0vec ` U ) -> 0 <_ ( ( ( B P A ) / ( ( N ` B ) ^ 2 ) ) x. ( A P B ) ) ) |
| 70 | eqid | |- ( -v ` U ) = ( -v ` U ) |
|
| 71 | eqid | |- ( .sOLD ` U ) = ( .sOLD ` U ) |
|
| 72 | 1 2 3 4 5 6 70 71 | siilem2 | |- ( ( ( ( B P A ) / ( ( N ` B ) ^ 2 ) ) e. CC /\ ( ( ( B P A ) / ( ( N ` B ) ^ 2 ) ) x. ( A P B ) ) e. RR /\ 0 <_ ( ( ( B P A ) / ( ( N ` B ) ^ 2 ) ) x. ( A P B ) ) ) -> ( ( B P A ) = ( ( ( B P A ) / ( ( N ` B ) ^ 2 ) ) x. ( ( N ` B ) ^ 2 ) ) -> ( sqrt ` ( ( A P B ) x. ( ( ( B P A ) / ( ( N ` B ) ^ 2 ) ) x. ( ( N ` B ) ^ 2 ) ) ) ) <_ ( ( N ` A ) x. ( N ` B ) ) ) ) |
| 73 | 47 61 69 72 | syl3anc | |- ( B =/= ( 0vec ` U ) -> ( ( B P A ) = ( ( ( B P A ) / ( ( N ` B ) ^ 2 ) ) x. ( ( N ` B ) ^ 2 ) ) -> ( sqrt ` ( ( A P B ) x. ( ( ( B P A ) / ( ( N ` B ) ^ 2 ) ) x. ( ( N ` B ) ^ 2 ) ) ) ) <_ ( ( N ` A ) x. ( N ` B ) ) ) ) |
| 74 | 45 73 | mpd | |- ( B =/= ( 0vec ` U ) -> ( sqrt ` ( ( A P B ) x. ( ( ( B P A ) / ( ( N ` B ) ^ 2 ) ) x. ( ( N ` B ) ^ 2 ) ) ) ) <_ ( ( N ` A ) x. ( N ` B ) ) ) |
| 75 | 44 74 | eqbrtrd | |- ( B =/= ( 0vec ` U ) -> ( abs ` ( A P B ) ) <_ ( ( N ` A ) x. ( N ` B ) ) ) |
| 76 | 22 75 | pm2.61ine | |- ( abs ` ( A P B ) ) <_ ( ( N ` A ) x. ( N ` B ) ) |