This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An inner product times its conjugate. (Contributed by NM, 23-Nov-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ipcl.1 | |- X = ( BaseSet ` U ) |
|
| ipcl.7 | |- P = ( .iOLD ` U ) |
||
| Assertion | ipipcj | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( A P B ) x. ( B P A ) ) = ( ( abs ` ( A P B ) ) ^ 2 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ipcl.1 | |- X = ( BaseSet ` U ) |
|
| 2 | ipcl.7 | |- P = ( .iOLD ` U ) |
|
| 3 | 1 2 | dipcl | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( A P B ) e. CC ) |
| 4 | 3 | absvalsqd | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( abs ` ( A P B ) ) ^ 2 ) = ( ( A P B ) x. ( * ` ( A P B ) ) ) ) |
| 5 | 1 2 | dipcj | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( * ` ( A P B ) ) = ( B P A ) ) |
| 6 | 5 | oveq2d | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( A P B ) x. ( * ` ( A P B ) ) ) = ( ( A P B ) x. ( B P A ) ) ) |
| 7 | 4 6 | eqtr2d | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( ( A P B ) x. ( B P A ) ) = ( ( abs ` ( A P B ) ) ^ 2 ) ) |